#include <iostream>
命名空间
{
enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };
void calcChessboardCorners(
Size boardSize,
float squareSize, vector<Point3f>& corners, Pattern patternType = CHESSBOARD)
{
corners.resize(0);
switch (patternType) {
case CHESSBOARD
case CIRCLES_GRID
for(
int i = 0; i < boardSize.
height; i++ )
for(
int j = 0; j < boardSize.
width; j++ )
corners.push_back(
Point3f(
float(j*squareSize),
float(i*squareSize), 0));
break;
case ASYMMETRIC_CIRCLES_GRID
for(
int i = 0; i < boardSize.
height; i++ )
for(
int j = 0; j < boardSize.
width; j++ )
corners.push_back(
Point3f(
float((2*j + i % 2)*squareSize),
float(i*squareSize), 0));
break;
default:
}
}
Mat computeHomography(
const Mat &R_1to2,
const Mat &tvec_1to2,
const double d_inv,
const Mat &normal)
{
Mat homography = R_1to2 + d_inv * tvec_1to2*normal.
t();
return homography;
}
void computeC2MC1(
const Mat &R1,
const Mat &tvec1,
const Mat &R2,
const Mat &tvec2,
{
tvec_1to2 = R2 * (-R1.
t()*tvec1) + tvec2;
}
void decomposeHomography(
const string &img1Path,
const string &img2Path,
const Size &patternSize,
const float squareSize, const string &intrinsicsPath)
{
Mat img1 = imread( samples::findFile( img1Path) );
Mat img2 = imread( samples::findFile( img2Path) );
vector<Point2f> corners1, corners2;
bool found1 = findChessboardCorners(img1, patternSize, corners1);
bool found2 = findChessboardCorners(img2, patternSize, corners2);
if (!found1 || !found2)
{
cout << "错误,无法在两张图像中找到棋盘角点。" << endl;
return;
}
vector<Point3f> objectPoints;
calcChessboardCorners(patternSize, squareSize, objectPoints);
FileStorage fs( samples::findFile( intrinsicsPath ), FileStorage::READ);
Mat cameraMatrix, distCoeffs;
fs["camera_matrix"] >> cameraMatrix;
fs["distortion_coefficients"] >> distCoeffs;
solvePnP(objectPoints, corners1, cameraMatrix, distCoeffs, rvec1, tvec1);
solvePnP(objectPoints, corners2, cameraMatrix, distCoeffs, rvec2, tvec2);
Rodrigues(rvec1, R1);
Rodrigues(rvec2, R2);
computeC2MC1(R1, tvec1, R2, tvec2, R_1to2, t_1to2);
Rodrigues(R_1to2, rvec_1to2);
Mat origin1 = R1*origin + tvec1;
double d_inv1 = 1.0 / normal1.
dot(origin1);
Mat homography_euclidean = computeHomography(R_1to2, t_1to2, d_inv1, normal1);
Mat homography = cameraMatrix * homography_euclidean * cameraMatrix.
inv();
homography /= homography.
at<
double>(2,2);
homography_euclidean /= homography_euclidean.
at<
double>(2,2);
vector<Mat> Rs_decomp, ts_decomp, normals_decomp;
int solutions = decomposeHomographyMat(homography, cameraMatrix, Rs_decomp, ts_decomp, normals_decomp);
cout << "根据相机位移计算的单应性矩阵分解:" << endl << endl;
for (int i = 0; i < solutions; i++)
{
double factor_d1 = 1.0 / d_inv1;
Rodrigues(Rs_decomp[i], rvec_decomp);
cout << "解 " << i << ":" << endl;
cout <<
"rvec 来自单应性分解: " << rvec_decomp.
t() << endl;
cout <<
"rvec 来自相机位移: " << rvec_1to2.
t() << endl;
cout <<
"tvec 来自单应性分解: " << ts_decomp[i].
t() <<
" 并按 d 缩放: " << factor_d1 * ts_decomp[i].t() << endl;
cout <<
"tvec 来自相机位移: " << t_1to2.
t() << endl;
cout <<
"平面法向量来自单应性分解: " << normals_decomp[i].
t() << endl;
cout <<
"相机 1 姿态下的平面法向量: " << normal1.
t() << endl << endl;
}
Mat H = findHomography(corners1, corners2);
solutions = decomposeHomographyMat(H, cameraMatrix, Rs_decomp, ts_decomp, normals_decomp);
cout << "findHomography() 估计的单应性矩阵分解: " << endl << endl;
for (int i = 0; i < solutions; i++)
{
double factor_d1 = 1.0 / d_inv1;
Rodrigues(Rs_decomp[i], rvec_decomp);
cout << "解 " << i << ":" << endl;
cout <<
"rvec 来自单应性分解: " << rvec_decomp.
t() << endl;
cout <<
"rvec 来自相机位移: " << rvec_1to2.
t() << endl;
cout <<
"tvec 来自单应性分解: " << ts_decomp[i].
t() <<
" 并按 d 缩放: " << factor_d1 * ts_decomp[i].t() << endl;
cout <<
"tvec 来自相机位移: " << t_1to2.
t() << endl;
cout <<
"平面法向量来自单应性分解: " << normals_decomp[i].
t() << endl;
cout <<
"相机 1 姿态下的平面法向量: " << normal1.
t() << endl << endl;
}
}
const char* params
= "{ help h | | 打印用法 }"
"{ image1 | left02.jpg | 源棋盘图像路径 }"
"{ image2 | left01.jpg | 目标棋盘图像路径 }"
"{ intrinsics | left_intrinsics.yml | 相机内参路径 }"
"{ width bw | 9 | 棋盘宽度 }"
"{ height bh | 6 | 棋盘高度 }"
"{ square_size | 0.025 | 棋盘方格大小 }";
}
int main(
int argc,
char *argv[])
{
if ( parser.has("help") )
{
parser.about( "单应性教程代码。\n"
"示例 4:分解单应性矩阵。\n" );
parser.printMessage();
return 0;
}
Size patternSize(parser.get<
int>(
"width"), parser.get<
int>(
"height"));
float squareSize = (float) parser.get<double>("square_size");
decomposeHomography(parser.get<
String>(
"image1"),
patternSize, squareSize,
parser.get<
String>(
"intrinsics"));
return 0;
}
用于命令行解析。
定义 utility.hpp:890
XML/YAML/JSON 文件存储类,封装了写入或读取所有必要信息……
定义 persistence.hpp:261
从 Mat 派生的模板矩阵类。
定义 mat.hpp:2247
MatExpr inv(int method=DECOMP_LU) const
求矩阵的逆。
double dot(InputArray m) const
计算两个向量的点积。
_Tp & at(int i0=0)
返回对指定数组元素的引用。
用于指定其坐标 x、y 和 z 的 3D 点的模板类。
定义 types.hpp:255
用于指定图像或矩形大小的模板类。
定义 types.hpp:335
_Tp height
高度
定义 types.hpp:363
_Tp width
宽度
定义 types.hpp:362
std::string String
定义 cvstd.hpp:151
#define CV_64F
定义 interface.h:79
#define CV_Error(code, msg)
调用错误处理程序。
定义 base.hpp:335
int main(int argc, char *argv[])
定义 highgui_qt.cpp:3