OpenCV 4.11.0
开源计算机视觉库
加载中…
搜索中…
无匹配项
samples/cpp/kalman.cpp

一个使用标准卡尔曼滤波器的示例

#include <stdio.h>
using namespace cv;
static inline Point calcPoint(Point2f center, double R, double angle)
{
return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
}
static void help()
{
printf( "\nOpenCV 卡尔曼滤波器 C 语言调用的示例。\n"
" 旋转点的跟踪。\n"
" 点在一个圆圈中移动,并由一个一维状态表征。\n"
" state_k+1 = state_k + speed + process_noise N(0, 1e-5)\n"
" 速度是恒定的。\n"
" 状态向量和测量向量都是一维的(一个点角),\n"
" 测量值是真实状态 + 高斯噪声 N(0, 1e-1)。\n"
" 真实点和测量点用红色线段连接,\n"
" 真实点和估计点用黄色线段连接,\n"
" 真实点和校正后的估计点用绿色线段连接。\n"
" (如果卡尔曼滤波器工作正常,\n"
" 黄色线段应该短于红色线段,并且\n"
" 绿色线段应该短于黄色线段)。\n"
"\n"
" 按任意键(ESC 除外)将重置跟踪。\n"
" 按 ESC 将停止程序。\n"
);
}
int main(int, char**)
{
help();
Mat img(500, 500, CV_8UC3);
KalmanFilter KF(2, 1, 0);
Mat state(2, 1, CV_32F); /* (phi, delta_phi) */
Mat processNoise(2, 1, CV_32F);
Mat measurement = Mat::zeros(1, 1, CV_32F);
char code = (char)-1;
for(;;)
{
img = Scalar::all(0);
state.at<float>(0) = 0.0f;
state.at<float>(1) = 2.f * (float)CV_PI / 6;
KF.transitionMatrix = (Mat_<float>(2, 2) << 1, 1, 0, 1);
setIdentity(KF.measurementMatrix);
setIdentity(KF.processNoiseCov, Scalar::all(1e-5));
setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));
setIdentity(KF.errorCovPost, Scalar::all(1));
randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));
for(;;)
{
Point2f center(img.cols*0.5f, img.rows*0.5f);
float R = img.cols/3.f;
double stateAngle = state.at<float>(0);
Point statePt = calcPoint(center, R, stateAngle);
Mat prediction = KF.predict();
double predictAngle = prediction.at<float>(0);
Point predictPt = calcPoint(center, R, predictAngle);
// 生成测量值
randn( measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));
measurement += KF.measurementMatrix*state;
double measAngle = measurement.at<float>(0);
Point measPt = calcPoint(center, R, measAngle);
// 基于测量值校正状态估计
// 更新 statePost & errorCovPost
KF.correct(measurement);
double improvedAngle = KF.statePost.at<float>(0);
Point improvedPt = calcPoint(center, R, improvedAngle);
// 绘制点
img = img * 0.2;
drawMarker(img, measPt, Scalar(0, 0, 255), cv::MARKER_SQUARE, 5, 2);
drawMarker(img, predictPt, Scalar(0, 255, 255), cv::MARKER_SQUARE, 5, 2);
drawMarker(img, improvedPt, Scalar(0, 255, 0), cv::MARKER_SQUARE, 5, 2);
drawMarker(img, statePt, Scalar(255, 255, 255), cv::MARKER_STAR, 10, 1);
// 预测一步
Mat test = Mat(KF.transitionMatrix*KF.statePost);
drawMarker(img, calcPoint(center, R, Mat(KF.transitionMatrix*KF.statePost).at<float>(0)),
Scalar(255, 255, 0), cv::MARKER_SQUARE, 12, 1);
line(img, statePt, measPt, Scalar(0,0,255), 1, LINE_AA, 0);
line(img, statePt, predictPt, Scalar(0,255,255), 1, LINE_AA, 0);
line(img, statePt, improvedPt, Scalar(0,255,0), 1, LINE_AA, 0);
randn(processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at(0, 0))));
state = KF.transitionMatrix*state + processNoise;
imshow("Kalman", img);
code = (char)waitKey(1000);
if( code > 0 )
break;
}
if( code == 27 || code == 'q' || code == 'Q' )
break;
}
return 0;
}
卡尔曼滤波器类。
定义 tracking.hpp:361
派生自Mat的模板矩阵类。
定义 mat.hpp:2247
n维稠密数组类
定义 mat.hpp:829
_Tp & at(int i0=0)
返回对指定数组元素的引用。
void setIdentity(InputOutputArray mtx, const Scalar &s=Scalar(1))
初始化比例缩放的单位矩阵。
void randn(InputOutputArray dst, InputArray mean, InputArray stddev)
用正态分布的随机数填充数组。
#define CV_32F
定义 interface.h:78
#define CV_8UC3
定义 interface.h:90
#define CV_PI
定义 cvdef.h:380
void imshow(const String &winname, InputArray mat)
在指定的窗口中显示图像。
int waitKey(int delay=0)
等待按下按键。
void drawMarker(InputOutputArray img, Point position, const Scalar &color, int markerType=MARKER_CROSS, int markerSize=20, int thickness=1, int line_type=8)
在图像的预定义位置绘制标记。
void line(InputOutputArray img, Point pt1, Point pt2, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
绘制连接两点的线段。
@ MARKER_SQUARE
正方形标记形状。
定义 imgproc.hpp:921
@ MARKER_STAR
星形标记形状,十字形和倾斜十字形的组合。
定义 imgproc.hpp:919
int main(int argc, char *argv[])
定义 highgui_qt.cpp:3
定义 core.hpp:107