OpenCV 4.11.0
开源计算机视觉库
加载中…
搜索中…
无匹配结果
OpenCV 中的 K均值聚类

目标

  • 学习如何在 OpenCV 中使用cv.kmeans()函数进行数据聚类

参数详解

输入参数

  1. samples:数据类型应为np.float32,每个特征应放在一列中。
  2. nclusters(K):最终所需的聚类数量。
  3. criteria:迭代终止准则。满足此准则时,算法迭代停止。实际上,它应该是包含3个参数的元组:`(type, max_iter, epsilon)`
    1. 终止准则的类型。它有如下3个标志:
      • cv.TERM_CRITERIA_EPS - 如果达到指定的精度epsilon,则停止算法迭代。
      • cv.TERM_CRITERIA_MAX_ITER - 经过指定的迭代次数max_iter后停止算法。
      • cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER - 当上述任何一个条件满足时停止迭代。
    2. max_iter - 指定最大迭代次数的整数。
    3. epsilon - 所需的精度。
  4. attempts:指定使用不同的初始标签执行算法的次数。算法返回产生最佳紧致度的标签。此紧致度作为输出返回。
  5. flags:此标志用于指定如何获取初始中心。通常为此使用两个标志:cv.KMEANS_PP_CENTERScv.KMEANS_RANDOM_CENTERS

输出参数

  1. compactness:它是每个点到其对应中心的平方距离之和。
  2. labels:这是标签数组(与上一篇文章中的“code”相同),每个元素标记为“0”、“1”……
  3. centers:这是聚类中心的数组。

现在我们将通过三个示例来了解如何应用K均值算法。

1. 仅包含一个特征的数据

假设您有一组只包含一个特征的数据,即一维数据。

我们首先创建数据并在 Matplotlib 中绘制它:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
x = np.random.randint(25,100,25)
y = np.random.randint(175,255,25)
z = np.hstack((x,y))
z = z.reshape((50,1))
z = np.float32(z)
plt.hist(z,256,[0,256]),plt.show()

我们得到了'z',它是一个大小为50的数组,值范围从0到255。我已经将'z'重塑为列向量。当存在多个特征时,这将更有用。然后我创建了np.float32类型的数据。

我们得到以下图像:

图像

现在我们应用KMeans函数。在此之前,我们需要指定准则。我的准则是:每当运行算法10次迭代或达到epsilon = 1.0的精度时,停止算法并返回答案。

# 定义准则 = (类型, 最大迭代次数 = 10, epsilon = 1.0)
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 10, 1.0)
# 设置标志(只是为了避免代码换行)
flags = cv.KMEANS_RANDOM_CENTERS
# 应用KMeans
compactness,labels,centers = cv.kmeans(z,2,None,criteria,10,flags)
double kmeans(InputArray data, int K, InputOutputArray bestLabels, TermCriteria criteria, int attempts, int flags, OutputArray centers=noArray())
查找聚类中心并将输入样本分组到聚类周围。

这给了我们紧致度、标签和中心。在本例中,我得到的中心为60和207。标签将与测试数据的大小相同,其中每个数据将标记为“0”、“1”、“2”等,具体取决于其质心。现在我们根据其标签将数据分成不同的聚类。

A = z[labels==0]
B = z[labels==1]

现在我们用红色绘制A,用蓝色绘制B,用黄色绘制其质心。

# 现在用红色绘制'A',用蓝色绘制'B',用黄色绘制'centers'
plt.hist(A,256,[0,256],color = 'r')
plt.hist(B,256,[0,256],color = 'b')
plt.hist(centers,32,[0,256],color = 'y')
plt.show()

以下是我们得到的输出:

图像

2. 包含多个特征的数据

在前面的示例中,我们只使用了身高来解决T恤衫尺寸问题。在这里,我们将同时使用身高和体重,即两个特征。

请记住,在前面的例子中,我们将数据转换为单个列向量。每个特征排列在一列中,而每一行对应一个输入测试样本。

例如,在本例中,我们设置了一个50x2大小的测试数据,它们是50个人的身高和体重。第一列对应所有50个人的身高,第二列对应他们的体重。第一行包含两个元素,第一个是第一个人的身高,第二个是他的体重。类似地,其余行对应其他人的身高和体重。请查看下面的图片。

图像

现在我直接进入代码:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
X = np.random.randint(25,50,(25,2))
Y = np.random.randint(60,85,(25,2))
Z = np.vstack((X,Y))
# 转换为np.float32
Z = np.float32(Z)
# 定义准则并应用kmeans()
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 10, 1.0)
ret,label,center=cv.kmeans(Z,2,None,criteria,10,cv.KMEANS_RANDOM_CENTERS)
# 现在分离数据,注意flatten()
A = Z[label.ravel()==0]
B = Z[label.ravel()==1]
# 绘制数据
plt.scatter(A[:,0],A[:,1])
plt.scatter(B[:,0],B[:,1],c = 'r')
plt.scatter(center[:,0],center[:,1],s = 80,c = 'y', marker = 's')
plt.xlabel('Height'),plt.ylabel('Weight')
plt.show()

以下是我们得到的输出:

图像

3. 颜色量化

颜色量化是减少图像中颜色数量的过程。这样做的一个原因是减少内存。有时,某些设备可能有限制,只能产生有限数量的颜色。在这些情况下,也会执行颜色量化。在这里,我们使用K均值聚类进行颜色量化。

这里没有什么需要解释的。有3个特征,例如R、G、B。因此,我们需要将图像重塑为Mx3大小的数组(M是图像中的像素数)。聚类后,我们将质心值(也是R、G、B)应用于所有像素,以便生成的图像具有指定数量的颜色。然后我们需要将其重塑回原始图像的形状。以下是代码:

import numpy as np
import cv2 as cv
img = cv.imread('home.jpg')
Z = img.reshape((-1,3))
# 转换为np.float32
Z = np.float32(Z)
# 定义准则、聚类数(K)并应用kmeans()
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 10, 1.0)
K = 8
ret,label,center=cv.kmeans(Z,K,None,criteria,10,cv.KMEANS_RANDOM_CENTERS)
# 现在转换回uint8,并制作原始图像
center = np.uint8(center)
res = center[label.flatten()]
res2 = res.reshape((img.shape))
cv.imshow('res2',res2)
void imshow(const String &winname, InputArray mat)
在指定的窗口中显示图像。
int waitKey(int delay=0)
等待按键按下。
void destroyAllWindows()
销毁所有 HighGUI 窗口。
CV_EXPORTS_W Mat imread(const String &filename, int flags=IMREAD_COLOR_BGR)
从文件中加载图像。

见下文 K=8 的结果

图像