|
GMat | cv::gapi::absDiff (const GMat &src1, const GMat &src2) |
| 计算两个矩阵之间的逐元素绝对差。
|
|
GMat | cv::gapi::absDiffC (const GMat &src, const GScalar &c) |
| 计算矩阵元素的绝对值。
|
|
GMat | cv::gapi::add (const GMat &src1, const GMat &src2, int ddepth=-1) |
| 计算两个矩阵的逐元素和。
|
|
GMat | cv::gapi::addC (const GMat &src1, const GScalar &c, int ddepth=-1) |
| 计算矩阵和给定标量的逐元素和。
|
|
GMat | cv::gapi::addC (const GScalar &c, const GMat &src1, int ddepth=-1) |
| 这是一个重载的成员函数,为了方便提供。它与上面的函数的区别仅仅在于它接受的参数。
|
|
GMat | cv::gapi::addWeighted (const GMat &src1, double alpha, const GMat &src2, double beta, double gamma, int ddepth=-1) |
| 计算两个矩阵的加权和。
|
|
GMat | cv::gapi::bitwise_and (const GMat &src1, const GMat &src2) |
| 计算两个矩阵的按位与运算 (src1 & src2) 计算两个大小相同的矩阵的逐元素按位逻辑与。
|
|
GMat | cv::gapi::bitwise_and (const GMat &src1, const GScalar &src2) |
|
GMat | cv::gapi::bitwise_not (const GMat &src) |
| 反转数组的每一位。
|
|
GMat | cv::gapi::bitwise_or (const GMat &src1, const GMat &src2) |
| 计算两个矩阵的按位或运算 (src1 | src2) 计算两个大小相同的矩阵的逐元素按位逻辑或。
|
|
GMat | cv::gapi::bitwise_or (const GMat &src1, const GScalar &src2) |
|
GMat | cv::gapi::bitwise_xor (const GMat &src1, const GMat &src2) |
| 计算两个矩阵的按位异或运算 (src1 ^ src2) 计算两个大小相同的矩阵的逐元素按位逻辑异或。
|
|
GMat | cv::gapi::bitwise_xor (const GMat &src1, const GScalar &src2) |
|
std::tuple< GMat, GMat > | cv::gapi::cartToPolar (const GMat &x, const GMat &y, bool angleInDegrees=false) |
| 计算二维向量的幅度和角度。
|
|
GMat | cv::gapi::cmpEQ (const GMat &src1, const GMat &src2) |
| 执行两个矩阵的逐元素比较,检查第一个矩阵的元素是否等于第二个矩阵中的元素。
|
|
GMat | cv::gapi::cmpEQ (const GMat &src1, const GScalar &src2) |
|
GMat | cv::gapi::cmpGE (const GMat &src1, const GMat &src2) |
| 执行两个矩阵的逐元素比较,检查第一个矩阵的元素是否大于或等于第二个矩阵中的元素。
|
|
GMat | cv::gapi::cmpGE (const GMat &src1, const GScalar &src2) |
|
GMat | cv::gapi::cmpGT (const GMat &src1, const GMat &src2) |
| 执行两个矩阵的逐元素比较,检查第一个矩阵的元素是否大于第二个矩阵中的元素。
|
|
GMat | cv::gapi::cmpGT (const GMat &src1, const GScalar &src2) |
|
GMat | cv::gapi::cmpLE (const GMat &src1, const GMat &src2) |
| 执行两个矩阵的逐元素比较,检查第一个矩阵的元素是否小于或等于第二个矩阵中的元素。
|
|
GMat | cv::gapi::cmpLE (GMat const& src1, GScalar const& src2) |
|
GMat | cv::gapi::cmpLT (GMat const& src1, GMat const& src2) |
| 执行两个矩阵的逐元素比较,检查第一个矩阵的元素是否小于第二个矩阵的元素。
|
|
GMat | cv::gapi::cmpLT (GMat const& src1, GScalar const& src2) |
|
GMat | cv::gapi::cmpNE (GMat const& src1, GMat const& src2) |
| 执行两个矩阵的逐元素比较,检查第一个矩阵的元素是否不等于第二个矩阵的元素。
|
|
GMat | cv::gapi::cmpNE (GMat const& src1, GScalar const& src2) |
|
GMat | cv::gapi::concatHor (GMat const& src1, GMat const& src2) |
| 对给定的矩阵应用水平拼接。
|
|
GMat | cv::gapi::concatHor (std::vector<GMat> const& v) |
|
GMat | cv::gapi::concatVert (GMat const& src1, GMat const& src2) |
| 对给定的矩阵应用垂直拼接。
|
|
GMat | cv::gapi::concatVert (std::vector<GMat> const& v) |
|
GMat | cv::gapi::convertTo (GMat const& src, int rdepth, double alpha=1, double beta=0) |
| 将矩阵转换为另一种数据深度,并可以选择缩放。
|
|
GOpaque<int> | cv::gapi::countNonZero (GMat const& src) |
| 计算非零数组元素的数量。
|
|
GMat | cv::gapi::crop (GMat const& src, Rect const& rect) |
| 裁剪一个二维矩阵。
|
|
GMat | cv::gapi::div (GMat const& src1, GMat const& src2, double scale, int ddepth=-1) |
| 执行两个矩阵的逐元素除法。
|
|
GMat | cv::gapi::divC (GMat const& src, GScalar const& divisor, double scale, int ddepth=-1) |
| 矩阵除以标量。
|
|
GMat | cv::gapi::divRC (GScalar const& divident, GMat const& src, double scale, int ddepth=-1) |
| 标量除以矩阵。
|
|
GMat | cv::gapi::flip (GMat const& src, int flipCode) |
| 围绕垂直轴、水平轴或两个轴翻转二维矩阵。
|
|
| cv::gapi::core::G_TYPED_KERNEL (GAbsDiff,< GMat(GMat, GMat)>, "org.opencv.core.matrixop.absdiff") |
|
| cv::gapi::core::G_TYPED_KERNEL (GAbsDiffC,< GMat(GMat, GScalar)>, "org.opencv.core.matrixop.absdiffC") |
|
| cv::gapi::core::G_TYPED_KERNEL (GAdd,< GMat(GMat, GMat, int)>, "org.opencv.core.math.add") |
|
| cv::gapi::core::G_TYPED_KERNEL (GAddC,< GMat(GMat, GScalar, int)>, "org.opencv.core.math.addC") |
|
| cv::gapi::core::G_TYPED_KERNEL (GAddW,< GMat(GMat, double, GMat, double, double, int)>, "org.opencv.core.matrixop.addweighted") |
|
| cv::gapi::core::G_TYPED_KERNEL (GAnd,< GMat(GMat, GMat)>, "org.opencv.core.pixelwise.bitwise_and") |
|
| cv::gapi::core::G_TYPED_KERNEL (GAndS,< GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.bitwise_andS") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCmpEQ,< GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpEQ") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCmpEQScalar,< GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpEQScalar") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCmpGE,< GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpGE") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCmpGEScalar,< GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpGEScalar") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCmpGT,< GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpGT") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCmpGTScalar,< GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpGTScalar") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCmpLE,< GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpLE") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCmpLEScalar,< GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpLEScalar") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCmpLT,< GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpLT") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCmpLTScalar,< GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpLTScalar") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCmpNE,< GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpNE") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCmpNEScalar,< GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpNEScalar") |
|
| cv::gapi::core::G_TYPED_KERNEL (GConcatHor,< GMat(GMat, GMat)>, "org.opencv.imgproc.transform.concatHor") |
|
| cv::gapi::core::G_TYPED_KERNEL (GConcatVert,< GMat(GMat, GMat)>, "org.opencv.imgproc.transform.concatVert") |
|
| cv::gapi::core::G_TYPED_KERNEL (GConvertTo,< GMat(GMat, int, double, double)>, "org.opencv.core.transform.convertTo") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCountNonZero,< GOpaque< int >(GMat)>, "org.opencv.core.matrixop.countNonZero") |
|
| cv::gapi::core::G_TYPED_KERNEL (GCrop,< GMat(GMat, Rect)>, "org.opencv.core.transform.crop") |
|
| cv::gapi::core::G_TYPED_KERNEL (GDiv,< GMat(GMat, GMat, double, int)>, "org.opencv.core.math.div") |
|
| cv::gapi::core::G_TYPED_KERNEL (GDivC,< GMat(GMat, GScalar, double, int)>, "org.opencv.core.math.divC") |
|
| cv::gapi::core::G_TYPED_KERNEL (GDivRC,< GMat(GScalar, GMat, double, int)>, "org.opencv.core.math.divRC") |
|
| cv::gapi::core::G_TYPED_KERNEL (GFlip,< GMat(GMat, int)>, "org.opencv.core.transform.flip") |
|
| cv::gapi::core::G_TYPED_KERNEL (GInRange,< GMat(GMat, GScalar, GScalar)>, "org.opencv.core.matrixop.inrange") |
|
| cv::gapi::core::G_TYPED_KERNEL (GKMeans2D,< std::tuple< GOpaque< double >, GArray< int >, GArray< Point2f > >(GArray< Point2f >, int, GArray< int >, TermCriteria, int, KmeansFlags)>, "org.opencv.core.kmeans2D") |
|
| cv::gapi::core::G_TYPED_KERNEL (GKMeans3D,< std::tuple< GOpaque< double >, GArray< int >, GArray< Point3f > >(GArray< Point3f >, int, GArray< int >, TermCriteria, int, KmeansFlags)>, "org.opencv.core.kmeans3D") |
|
| cv::gapi::core::G_TYPED_KERNEL (GKMeansND,< std::tuple< GOpaque< double >, GMat, GMat >(GMat, int, GMat, TermCriteria, int, KmeansFlags)>, "org.opencv.core.kmeansND") |
|
| cv::gapi::core::G_TYPED_KERNEL (GKMeansNDNoInit,< std::tuple< GOpaque< double >, GMat, GMat >(GMat, int, TermCriteria, int, KmeansFlags)>, "org.opencv.core.kmeansNDNoInit") |
|
| cv::gapi::core::G_TYPED_KERNEL (GLUT,< GMat(GMat, Mat)>, "org.opencv.core.transform.LUT") |
|
| cv::gapi::core::G_TYPED_KERNEL (GMask,< GMat(GMat, GMat)>, "org.opencv.core.pixelwise.mask") |
|
| cv::gapi::core::G_TYPED_KERNEL (GMax,< GMat(GMat, GMat)>, "org.opencv.core.matrixop.max") |
|
| cv::gapi::core::G_TYPED_KERNEL (GMean,< GScalar(GMat)>, "org.opencv.core.math.mean") |
|
| cv::gapi::core::G_TYPED_KERNEL (GMerge3,< GMat(GMat, GMat, GMat)>, "org.opencv.core.transform.merge3") |
|
| cv::gapi::core::G_TYPED_KERNEL (GMerge4,< GMat(GMat, GMat, GMat, GMat)>, "org.opencv.core.transform.merge4") |
|
| cv::gapi::core::G_TYPED_KERNEL (GMin,< GMat(GMat, GMat)>, "org.opencv.core.matrixop.min") |
|
| cv::gapi::core::G_TYPED_KERNEL (GMul,< GMat(GMat, GMat, double, int)>, "org.opencv.core.math.mul") |
|
| cv::gapi::core::G_TYPED_KERNEL (GMulC,< GMat(GMat, GScalar, int)>, "org.opencv.core.math.mulC") |
|
| cv::gapi::core::G_TYPED_KERNEL (GMulCOld,< GMat(GMat, double, int)>, "org.opencv.core.math.mulCOld") |
|
| cv::gapi::core::G_TYPED_KERNEL (GMulS,< GMat(GMat, GScalar)>, "org.opencv.core.math.muls") |
|
| cv::gapi::core::G_TYPED_KERNEL (GNormalize,< GMat(GMat, double, double, int, int)>, "org.opencv.core.normalize") |
|
| cv::gapi::core::G_TYPED_KERNEL (GNormInf,< GScalar(GMat)>, "org.opencv.core.matrixop.norminf") |
|
| cv::gapi::core::G_TYPED_KERNEL (GNormL1,< GScalar(GMat)>, "org.opencv.core.matrixop.norml1") |
|
| cv::gapi::core::G_TYPED_KERNEL (GNormL2,< GScalar(GMat)>, "org.opencv.core.matrixop.norml2") |
|
| cv::gapi::core::G_TYPED_KERNEL (GNot,< GMat(GMat)>, "org.opencv.core.pixelwise.bitwise_not") |
|
| cv::gapi::core::G_TYPED_KERNEL (GOr,< GMat(GMat, GMat)>, "org.opencv.core.pixelwise.bitwise_or") |
|
| cv::gapi::core::G_TYPED_KERNEL (GOrS,< GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.bitwise_orS") |
|
| cv::gapi::core::G_TYPED_KERNEL (GPhase,< GMat(GMat, GMat, bool)>, "org.opencv.core.math.phase") |
|
| cv::gapi::core::G_TYPED_KERNEL (GRemap,< GMat(GMat, Mat, Mat, int, int, Scalar)>, "org.opencv.core.transform.remap") |
|
| cv::gapi::core::G_TYPED_KERNEL (GSelect,< GMat(GMat, GMat, GMat)>, "org.opencv.core.pixelwise.select") |
|
| cv::gapi::core::G_TYPED_KERNEL (GSqrt,< GMat(GMat)>, "org.opencv.core.math.sqrt") |
|
| cv::gapi::core::G_TYPED_KERNEL (GSub,< GMat(GMat, GMat, int)>, "org.opencv.core.math.sub") |
|
| cv::gapi::core::G_TYPED_KERNEL (GSubC,< GMat(GMat, GScalar, int)>, "org.opencv.core.math.subC") |
|
| cv::gapi::core::G_TYPED_KERNEL (GSubRC,< GMat(GScalar, GMat, int)>, "org.opencv.core.math.subRC") |
|
| cv::gapi::core::G_TYPED_KERNEL (GSum,< GScalar(GMat)>, "org.opencv.core.matrixop.sum") |
|
| cv::gapi::core::G_TYPED_KERNEL (GThreshold,< GMat(GMat, GScalar, GScalar, int)>, "org.opencv.core.matrixop.threshold") |
|
| cv::gapi::core::G_TYPED_KERNEL (GTranspose,< GMat(GMat)>, "org.opencv.core.transpose") |
|
| cv::gapi::core::G_TYPED_KERNEL (GWarpAffine,< GMat(GMat, const Mat &, Size, int, int, const cv::Scalar &)>, "org.opencv.core.warpAffine") |
|
| cv::gapi::core::G_TYPED_KERNEL (GWarpPerspective,< GMat(GMat, const Mat &, Size, int, int, const cv::Scalar &)>, "org.opencv.core.warpPerspective") |
|
| cv::gapi::core::G_TYPED_KERNEL (GXor,< GMat(GMat, GMat)>, "org.opencv.core.pixelwise.bitwise_xor") |
|
| cv::gapi::core::G_TYPED_KERNEL (GXorS,< GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.bitwise_xorS") |
|
| cv::gapi::streaming::G_TYPED_KERNEL (GSize,< GOpaque< Size >(GMat)>, "org.opencv.streaming.size") |
|
| cv::gapi::streaming::G_TYPED_KERNEL (GSizeMF,< GOpaque< Size >(GFrame)>, "org.opencv.streaming.sizeMF") |
|
| cv::gapi::streaming::G_TYPED_KERNEL (GSizeR,< GOpaque< Size >(GOpaque< Rect >)>, "org.opencv.streaming.sizeR") |
|
| cv::gapi::core::G_TYPED_KERNEL_M (GCartToPolar,< GMat2(GMat, GMat, bool)>, "org.opencv.core.math.cartToPolar") |
|
| cv::gapi::core::G_TYPED_KERNEL_M (GIntegral,< GMat2(GMat, int, int)>, "org.opencv.core.matrixop.integral") |
|
| cv::gapi::core::G_TYPED_KERNEL_M (GPolarToCart,< GMat2(GMat, GMat, bool)>, "org.opencv.core.math.polarToCart") |
|
| cv::gapi::core::G_TYPED_KERNEL_M (GSplit3,< GMat3(GMat)>, "org.opencv.core.transform.split3") |
|
| cv::gapi::core::G_TYPED_KERNEL_M (GSplit4,< GMat4(GMat)>,"org.opencv.core.transform.split4") |
|
| cv::gapi::core::G_TYPED_KERNEL_M (GThresholdOT,< GMatScalar(GMat, GScalar, int)>, "org.opencv.core.matrixop.thresholdOT") |
|
GMat | cv::gapi::inRange (const GMat &src, const GScalar &threshLow, const GScalar &threshUp) |
| 对每个矩阵元素应用范围级别阈值。
|
|
std::tuple< GMat, GMat > | cv::gapi::integral (const GMat &src, int sdepth=-1, int sqdepth=-1) |
| 计算图像积分。
|
|
std::tuple< GOpaque< double >, GArray< int >, GArray< Point2f > > | cv::gapi::kmeans (const GArray< Point2f > &data, const int K, const GArray< int > &bestLabels, const TermCriteria &criteria, const int attempts, const KmeansFlags flags) |
|
std::tuple< GOpaque< double >, GArray< int >, GArray< Point3f > > | cv::gapi::kmeans (const GArray< Point3f > &data, const int K, const GArray< int > &bestLabels, const TermCriteria &criteria, const int attempts, const KmeansFlags flags) |
|
std::tuple< GOpaque< double >, GMat, GMat > | cv::gapi::kmeans (const GMat &data, const int K, const GMat &bestLabels, const TermCriteria &criteria, const int attempts, const KmeansFlags flags) |
| 查找聚类中心并将输入样本分组到聚类周围。
|
|
std::tuple< GOpaque< double >, GMat, GMat > | cv::gapi::kmeans (const GMat &data, const int K, const TermCriteria &criteria, const int attempts, const KmeansFlags flags) |
|
GMat | cv::gapi::LUT (const GMat &src, const Mat &lut) |
| 执行矩阵的查找表转换。
|
|
GMat | cv::gapi::mask (const GMat &src, const GMat &mask) |
| 将掩码应用于矩阵。
|
|
GMat | cv::gapi::max (const GMat &src1, const GMat &src2) |
| 计算两个矩阵的按元素最大值。
|
|
GScalar | cv::gapi::mean (const GMat &src) |
| 计算矩阵元素的平均值。
|
|
GMat | cv::gapi::merge3 (const GMat &src1, const GMat &src2, const GMat &src3) |
| 从3个单通道矩阵创建一个3通道矩阵。
|
|
GMat | cv::gapi::merge4 (const GMat &src1, const GMat &src2, const GMat &src3, const GMat &src4) |
| 从4个单通道矩阵创建一个4通道矩阵。
|
|
GMat | cv::gapi::min (const GMat &src1, const GMat &src2) |
| 计算两个矩阵的按元素最小值。
|
|
GMat | cv::gapi::mul (const GMat &src1, const GMat &src2, double scale=1.0, int ddepth=-1) |
| 计算两个矩阵的按元素缩放乘积。
|
|
GMat | cv::gapi::mulC (const GMat &src, const GScalar &multiplier, int ddepth=-1) |
| 这是一个重载的成员函数,为了方便提供。它与上面的函数的区别仅仅在于它接受的参数。
|
|
GMat | cv::gapi::mulC (const GMat &src, double multiplier, int ddepth=-1) |
| 矩阵乘以标量。
|
|
GMat | cv::gapi::mulC (const GScalar &multiplier, const GMat &src, int ddepth=-1) |
| 这是一个重载的成员函数,为了方便提供。它与上面的函数的区别仅仅在于它接受的参数。
|
|
GMat | cv::gapi::normalize (const GMat &src, double alpha, double beta, int norm_type, int ddepth=-1) |
| 归一化数组的范数或值范围。
|
|
GScalar | cv::gapi::normInf (const GMat &src) |
| 计算矩阵的绝对无穷范数。
|
|
GScalar | cv::gapi::normL1 (const GMat &src) |
| 计算矩阵的绝对L1范数。
|
|
GScalar | cv::gapi::normL2 (const GMat &src) |
| 计算矩阵的绝对L2范数。
|
|
GMat | cv::gapi::phase (const GMat &x, const GMat &y, bool angleInDegrees=false) |
| 计算二维向量的旋转角度。
|
|
std::tuple< GMat, GMat > | cv::gapi::polarToCart (const GMat &magnitude, const GMat &angle, bool angleInDegrees=false) |
| 根据向量的幅值和角度计算二维向量的x和y坐标。
|
|
GMat | cv::gapi::remap (const GMat &src, const Mat &map1, const Mat &map2, int interpolation, int borderMode=BORDER_CONSTANT, const Scalar &borderValue=Scalar()) |
| 将通用几何变换应用于图像。
|
|
GMat | cv::gapi::select (const GMat &src1, const GMat &src2, const GMat &mask) |
| 根据给定的掩码从两个输入矩阵中选择值。如果掩码矩阵的对应值为255,则函数将第一个输入矩阵的值设置为输出矩阵;如果掩码矩阵的值为0,则将第二个输入矩阵的值设置为输出矩阵。
|
|
GOpaque< Size > | cv::gapi::streaming::size (const GFrame &src) |
| 获取MediaFrame的尺寸。
|
|
GOpaque< Size > | cv::gapi::streaming::size (const GMat &src) |
| 获取Mat的尺寸。
|
|
GOpaque< Size > | cv::gapi::streaming::size (const GOpaque< Rect > &r) |
|
std::tuple< GMat, GMat, GMat > | cv::gapi::split3 (const GMat &src) |
| 将一个3通道矩阵分成3个单通道矩阵。
|
|
std::tuple< GMat, GMat, GMat, GMat > | cv::gapi::split4 (const GMat &src) |
| 将一个4通道矩阵分成4个单通道矩阵。
|
|
GMat | cv::gapi::sqrt (const GMat &src) |
| 计算数组元素的平方根。
|
|
GMat | cv::gapi::sub (const GMat &src1, const GMat &src2, int ddepth=-1) |
| 计算两个矩阵的逐元素差。
|
|
GMat | cv::gapi::subC (const GMat &src, const GScalar &c, int ddepth=-1) |
| 计算矩阵与给定标量之间的逐元素差。
|
|
GMat | cv::gapi::subRC (const GScalar &c, const GMat &src, int ddepth=-1) |
| 计算给定标量与矩阵之间的逐元素差。
|
|
GScalar | cv::gapi::sum (const GMat &src) |
| 计算所有矩阵元素的总和。
|
|
std::tuple< GMat, GScalar > | cv::gapi::threshold (const GMat &src, const GScalar &maxval, int type) |
|
GMat | cv::gapi::threshold (const GMat &src, const GScalar &thresh, const GScalar &maxval, int type) |
| 对每个矩阵元素应用固定级别的阈值。
|
|
GMat | cv::gapi::transpose (const GMat &src) |
| 转置矩阵。
|
|
GMat | cv::gapi::warpAffine (const GMat &src, const Mat &M, const Size &dsize, int flags=cv::INTER_LINEAR, int borderMode=cv::BORDER_CONSTANT, const Scalar &borderValue=Scalar()) |
| 将仿射变换应用于图像。
|
|
GMat | cv::gapi::warpPerspective (const GMat &src, const Mat &M, const Size &dsize, int flags=cv::INTER_LINEAR, int borderMode=cv::BORDER_CONSTANT, const Scalar &borderValue=Scalar()) |
| 将透视变换应用于图像。
|
|