OpenCV 4.12.0
开源计算机视觉
加载中...
搜索中...
无匹配项
形状距离与匹配

详细描述

类  cv::AffineTransformer
 OpenCV 仿射变换算法的封装类。 : 更多...
 
类  cv::ChiHistogramCostExtractor
 一种基于 Chi 的成本提取器。 : 更多...
 
类  cv::EMDHistogramCostExtractor
 一种基于 EMD 的成本提取器。 : 更多...
 
类  cv::EMDL1HistogramCostExtractor
 一种基于 EMD-L1 的成本提取器。 : 更多...
 
类  cv::HausdorffDistanceExtractor
 一种简单的、用于测量由轮廓定义的形状之间豪斯多夫距离的方法。 更多...
 
类  cv::HistogramCostExtractor
 直方图成本算法的抽象基类。 更多...
 
类  cv::NormHistogramCostExtractor
 一种基于范数的成本提取器。 : 更多...
 
类  cv::ShapeContextDistanceExtractor
 Shape Context 描述符和匹配算法的实现。 更多...
 
类  cv::ShapeDistanceExtractor
 形状距离算法的抽象基类。 更多...
 
类  cv::ShapeTransformer
 形状变换算法的抽象基类。 更多...
 
类  cv::ThinPlateSplineShapeTransformer
 变换的定义。 更多...
 

函数

Ptr< AffineTransformercv::createAffineTransformer (bool fullAffine)
 
Ptr< HistogramCostExtractorcv::createChiHistogramCostExtractor (int nDummies=25, float defaultCost=0.2f)
 
Ptr< HistogramCostExtractorcv::createEMDHistogramCostExtractor (int flag=DIST_L2, int nDummies=25, float defaultCost=0.2f)
 
Ptr< HistogramCostExtractorcv::createEMDL1HistogramCostExtractor (int nDummies=25, float defaultCost=0.2f)
 
Ptr< HausdorffDistanceExtractorcv::createHausdorffDistanceExtractor (int distanceFlag=cv::NORM_L2, float rankProp=0.6f)
 
Ptr< HistogramCostExtractorcv::createNormHistogramCostExtractor (int flag=DIST_L2, int nDummies=25, float defaultCost=0.2f)
 
Ptr< ShapeContextDistanceExtractorcv::createShapeContextDistanceExtractor (int nAngularBins=12, int nRadialBins=4, float innerRadius=0.2f, float outerRadius=2, int iterations=3, const Ptr< HistogramCostExtractor > &comparer=createChiHistogramCostExtractor(), const Ptr< ShapeTransformer > &transformer=createThinPlateSplineShapeTransformer())
 
Ptr< ThinPlateSplineShapeTransformercv::createThinPlateSplineShapeTransformer (double regularizationParameter=0)
 
float cv::EMDL1 (InputArray signature1, InputArray signature2)
 根据 Haibin Ling 和 Kazunori Okuda 的论文“EMD-L1: An efficient and Robust Algorithm for comparing histogram-based descriptors”以及 Elizaveta Levina 和 Peter Bickel 的论文“The Earth Mover's Distance is the Mallows Distance: Some Insights from Statistics”,计算两个加权点配置之间的“最小工作”距离。
 

函数文档

◆ createAffineTransformer()

Ptr< AffineTransformer > cv::createAffineTransformer ( bool fullAffine)
Python
cv.createAffineTransformer(fullAffine) -> retval

#include <opencv2/shape/shape_transformer.hpp>

完整构造函数

◆ createChiHistogramCostExtractor()

Ptr< HistogramCostExtractor > cv::createChiHistogramCostExtractor ( int nDummies = 25,
float defaultCost = 0.2f )
Python
cv.createChiHistogramCostExtractor([, nDummies[, defaultCost]]) -> retval

◆ createEMDHistogramCostExtractor()

Ptr< HistogramCostExtractor > cv::createEMDHistogramCostExtractor ( int flag = DIST_L2,
int nDummies = 25,
float defaultCost = 0.2f )
Python
cv.createEMDHistogramCostExtractor([, flag[, nDummies[, defaultCost]]]) -> retval

◆ createEMDL1HistogramCostExtractor()

Ptr< HistogramCostExtractor > cv::createEMDL1HistogramCostExtractor ( int nDummies = 25,
float defaultCost = 0.2f )
Python
cv.createEMDL1HistogramCostExtractor([, nDummies[, defaultCost]]) -> retval

◆ createHausdorffDistanceExtractor()

Ptr< HausdorffDistanceExtractor > cv::createHausdorffDistanceExtractor ( int distanceFlag = cv::NORM_L2,
float rankProp = 0.6f )
Python
cv.createHausdorffDistanceExtractor([, distanceFlag[, rankProp]]) -> retval

◆ createNormHistogramCostExtractor()

Ptr< HistogramCostExtractor > cv::createNormHistogramCostExtractor ( int flag = DIST_L2,
int nDummies = 25,
float defaultCost = 0.2f )
Python
cv.createNormHistogramCostExtractor([, flag[, nDummies[, defaultCost]]]) -> retval

◆ createShapeContextDistanceExtractor()

Ptr< ShapeContextDistanceExtractor > cv::createShapeContextDistanceExtractor ( int nAngularBins = 12,
int nRadialBins = 4,
float innerRadius = 0.2f,
float outerRadius = 2,
int iterations = 3,
const Ptr< HistogramCostExtractor > & comparer = createChiHistogramCostExtractor(),
const Ptr< ShapeTransformer > & transformer = createThinPlateSplineShapeTransformer() )
Python
cv.createShapeContextDistanceExtractor([, nAngularBins[, nRadialBins[, innerRadius[, outerRadius[, iterations[, comparer[, transformer]]]]]]]) -> retval

◆ createThinPlateSplineShapeTransformer()

Ptr< ThinPlateSplineShapeTransformer > cv::createThinPlateSplineShapeTransformer ( double regularizationParameter = 0)
Python
cv.createThinPlateSplineShapeTransformer([, regularizationParameter]) -> retval

#include <opencv2/shape/shape_transformer.hpp>

完整构造函数

◆ EMDL1()

float cv::EMDL1 ( InputArray signature1,
InputArray signature2 )

#include <opencv2/shape/emdL1.hpp>

根据 Haibin Ling 和 Kazunori Okuda 的论文“EMD-L1: An efficient and Robust Algorithm for comparing histogram-based descriptors”以及 Elizaveta Levina 和 Peter Bickel 的论文“The Earth Mover's Distance is the Mallows Distance: Some Insights from Statistics”,计算两个加权点配置之间的“最小工作”距离。

参数
signature1第一个签名,一个单列浮点矩阵。每行是每个 bin 中直方图的值。
signature2第二个签名,格式和大小与 signature1 相同。