使用广义霍夫变换在灰度图像中查找任意模板 更多...
#include <opencv2/imgproc.hpp>
|
| virtual void | detect (InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes=noArray())=0 |
| |
| virtual void | detect (InputArray image, OutputArray positions, OutputArray votes=noArray())=0 |
| | 在图像上查找模板
|
| |
| virtual int | getCannyHighThresh () const =0 |
| |
| virtual int | getCannyLowThresh () const =0 |
| |
| virtual double | getDp () const =0 |
| |
| virtual int | getMaxBufferSize () const =0 |
| |
| virtual double | getMinDist () const =0 |
| |
| virtual void | setCannyHighThresh (int cannyHighThresh)=0 |
| | Canny 高阈值。
|
| |
| virtual void | setCannyLowThresh (int cannyLowThresh)=0 |
| | Canny 低阈值。
|
| |
| virtual void | setDp (double dp)=0 |
| | 累加器分辨率与图像分辨率的反比。
|
| |
| virtual void | setMaxBufferSize (int maxBufferSize)=0 |
| | 内部缓冲区的最大大小。
|
| |
| virtual void | setMinDist (double minDist)=0 |
| | 检测到的对象中心之间的最小距离。
|
| |
| virtual void | setTemplate (InputArray edges, InputArray dx, InputArray dy, Point templCenter=Point(-1, -1))=0 |
| |
| virtual void | setTemplate (InputArray templ, Point templCenter=Point(-1, -1))=0 |
| | 设置要搜索的模板
|
| |
| | Algorithm () |
| |
| virtual | ~Algorithm () |
| |
| virtual void | clear () |
| | 清除算法状态。
|
| |
| virtual bool | empty () const |
| | 如果 Algorithm 为空(例如,在最初或在不成功的读取之后),则返回 true。
|
| |
| virtual String | getDefaultName () const |
| |
| virtual void | read (const FileNode &fn) |
| | 从文件存储中读取算法参数。
|
| |
| virtual void | save (const String &filename) const |
| |
| void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
| |
| virtual void | write (FileStorage &fs) const |
| | 将算法参数存储到文件存储中。
|
| |
| void | write (FileStorage &fs, const String &name) const |
| |
◆ detect() [1/2]
| Python |
|---|
| cv.GeneralizedHough.detect( | image[, positions[, votes]] | ) -> | 位置,投票 |
| cv.GeneralizedHough.detect( | edges, dx, dy[, positions[, votes]] | ) -> | 位置,投票 |
◆ detect() [2/2]
| Python |
|---|
| cv.GeneralizedHough.detect( | image[, positions[, votes]] | ) -> | 位置,投票 |
| cv.GeneralizedHough.detect( | edges, dx, dy[, positions[, votes]] | ) -> | 位置,投票 |
◆ getCannyHighThresh()
| virtual int cv::GeneralizedHough::getCannyHighThresh |
( |
| ) |
const |
|
纯虚函数 |
| Python |
|---|
| cv.GeneralizedHough.getCannyHighThresh( | | ) -> | retval |
◆ getCannyLowThresh()
| virtual int cv::GeneralizedHough::getCannyLowThresh |
( |
| ) |
const |
|
纯虚函数 |
| Python |
|---|
| cv.GeneralizedHough.getCannyLowThresh( | | ) -> | retval |
◆ getDp()
| virtual double cv::GeneralizedHough::getDp |
( |
| ) |
const |
|
纯虚函数 |
| Python |
|---|
| cv.GeneralizedHough.getDp( | | ) -> | retval |
◆ getMaxBufferSize()
| virtual int cv::GeneralizedHough::getMaxBufferSize |
( |
| ) |
const |
|
纯虚函数 |
| Python |
|---|
| cv.GeneralizedHough.getMaxBufferSize( | | ) -> | retval |
◆ getMinDist()
| virtual double cv::GeneralizedHough::getMinDist |
( |
| ) |
const |
|
纯虚函数 |
| Python |
|---|
| cv.GeneralizedHough.getMinDist( | | ) -> | retval |
◆ setCannyHighThresh()
| virtual void cv::GeneralizedHough::setCannyHighThresh |
( |
int | cannyHighThresh | ) |
|
|
纯虚函数 |
| Python |
|---|
| cv.GeneralizedHough.setCannyHighThresh( | cannyHighThresh | ) -> | 无 |
◆ setCannyLowThresh()
| virtual void cv::GeneralizedHough::setCannyLowThresh |
( |
int | cannyLowThresh | ) |
|
|
纯虚函数 |
| Python |
|---|
| cv.GeneralizedHough.setCannyLowThresh( | cannyLowThresh | ) -> | 无 |
◆ setDp()
| virtual void cv::GeneralizedHough::setDp |
( |
double | dp | ) |
|
|
纯虚函数 |
| Python |
|---|
| cv.GeneralizedHough.setDp( | dp | ) -> | 无 |
◆ setMaxBufferSize()
| virtual void cv::GeneralizedHough::setMaxBufferSize |
( |
int | maxBufferSize | ) |
|
|
纯虚函数 |
| Python |
|---|
| cv.GeneralizedHough.setMaxBufferSize( | maxBufferSize | ) -> | 无 |
◆ setMinDist()
| virtual void cv::GeneralizedHough::setMinDist |
( |
double | minDist | ) |
|
|
纯虚函数 |
| Python |
|---|
| cv.GeneralizedHough.setMinDist( | minDist | ) -> | 无 |
◆ setTemplate() [1/2]
| Python |
|---|
| cv.GeneralizedHough.setTemplate( | templ[, templCenter] | ) -> | 无 |
| cv.GeneralizedHough.setTemplate( | edges, dx, dy[, templCenter] | ) -> | 无 |
◆ setTemplate() [2/2]
| virtual void cv::GeneralizedHough::setTemplate |
( |
InputArray | templ, |
|
|
Point | templCenter = Point(-1, -1) ) |
|
纯虚函数 |
| Python |
|---|
| cv.GeneralizedHough.setTemplate( | templ[, templCenter] | ) -> | 无 |
| cv.GeneralizedHough.setTemplate( | edges, dx, dy[, templCenter] | ) -> | 无 |
此类文档是从以下文件生成的