基于 [3] [3] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014 的 Objectness 算法。 更多...
#include <opencv2/saliency/saliencySpecializedClasses.hpp>
基于 [3] [3] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014 的 Objectness 算法。
来自 [56] 的二值化规范化梯度算法
◆ ObjectnessBING()
| cv::saliency::ObjectnessBING::ObjectnessBING |
( |
| ) |
|
◆ ~ObjectnessBING()
| virtual cv::saliency::ObjectnessBING::~ObjectnessBING |
( |
| ) |
|
|
virtual |
◆ computeSaliency()
| Python |
|---|
| cv.saliency.ObjectnessBING.computeSaliency( | image[, saliencyMap] | ) -> | retval, saliencyMap |
◆ computeSaliencyImpl()
| bool cv::saliency::ObjectnessBING::computeSaliencyImpl |
( |
InputArray | image, |
|
|
OutputArray | objectnessBoundingBox ) |
|
protectedvirtual |
执行完成二值化规范化梯度算法所需的所有操作并调用所有内部函数。
- 参数
-
| image | 输入图像。根据此专门算法的需要,param image 是一个单一的Mat |
| objectnessBoundingBox | 对象性边界框向量。根据此专门算法给出的结果,objectnessBoundingBox 是一个 vector<Vec4i>。每个边界框由一个 Vec4i 表示,用于 (minX, minY, maxX, maxY)。 |
实现 cv::saliency::Objectness。
◆ create()
| Python |
|---|
| cv.saliency.ObjectnessBING.create( | | ) -> | retval |
| cv.saliency.ObjectnessBING_create( | | ) -> | retval |
◆ getBase()
| double cv::saliency::ObjectnessBING::getBase |
( |
| ) |
const |
|
inline |
| Python |
|---|
| cv.saliency.ObjectnessBING.getBase( | | ) -> | retval |
◆ getNSS()
| int cv::saliency::ObjectnessBING::getNSS |
( |
| ) |
const |
|
inline |
| Python |
|---|
| cv.saliency.ObjectnessBING.getNSS( | | ) -> | retval |
◆ getobjectnessValues()
| std::vector< float > cv::saliency::ObjectnessBING::getobjectnessValues |
( |
| ) |
|
| Python |
|---|
| cv.saliency.ObjectnessBING.getobjectnessValues( | | ) -> | retval |
返回矩形的对象性值列表。
与算法返回的 vector<Vec4i> objectnessBoundingBox 具有相同的顺序(在 computeSaliencyImpl 函数中)。这些分数越大,越有可能成为对象窗口。
◆ getW()
| int cv::saliency::ObjectnessBING::getW |
( |
| ) |
const |
|
inline |
| Python |
|---|
| cv.saliency.ObjectnessBING.getW( | | ) -> | retval |
◆ read()
| void cv::saliency::ObjectnessBING::read |
( |
| ) |
|
| Python |
|---|
| cv.saliency.ObjectnessBING.read( | | ) -> | 无 |
◆ setBase()
| void cv::saliency::ObjectnessBING::setBase |
( |
double | val | ) |
|
|
inline |
| Python |
|---|
| cv.saliency.ObjectnessBING.setBase( | val | ) -> | 无 |
◆ setBBResDir()
| void cv::saliency::ObjectnessBING::setBBResDir |
( |
const String & | resultsDir | ) |
|
| Python |
|---|
| cv.saliency.ObjectnessBING.setBBResDir( | resultsDir | ) -> | 无 |
这是一个实用函数,允许设置算法将保存可选结果的任意路径。
(即,将对象性返回的矩形总数和列表写入文件,每行一个)。
- 参数
-
◆ setNSS()
| void cv::saliency::ObjectnessBING::setNSS |
( |
int | val | ) |
|
|
inline |
| Python |
|---|
| cv.saliency.ObjectnessBING.setNSS( | val | ) -> | 无 |
◆ setTrainingPath()
| void cv::saliency::ObjectnessBING::setTrainingPath |
( |
const String & | trainingPath | ) |
|
| Python |
|---|
| cv.saliency.ObjectnessBING.setTrainingPath( | trainingPath | ) -> | 无 |
这是一个实用函数,允许设置算法将从中加载训练模型的正确路径。
- 参数
-
◆ setW()
| void cv::saliency::ObjectnessBING::setW |
( |
int | val | ) |
|
|
inline |
| Python |
|---|
| cv.saliency.ObjectnessBING.setW( | val | ) -> | 无 |
◆ write()
| void cv::saliency::ObjectnessBING::write |
( |
| ) |
const |
| Python |
|---|
| cv.saliency.ObjectnessBING.write( | | ) -> | 无 |
此类的文档是从以下文件生成的