使用 FAST 方法进行特征检测的包装类。 : 更多...
#include <opencv2/features2d.hpp>
|
| virtual String | getDefaultName () const CV_OVERRIDE |
| |
| virtual bool | getNonmaxSuppression () const =0 |
| |
| virtual int | getThreshold () const =0 |
| |
| virtual FastFeatureDetector::DetectorType | getType () const =0 |
| |
| virtual void | setNonmaxSuppression (bool f)=0 |
| |
| virtual void | setThreshold (int threshold)=0 |
| |
| virtual void | setType (FastFeatureDetector::DetectorType type)=0 |
| |
| virtual | ~Feature2D () |
| |
| virtual void | compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors) |
| | 计算在图像(第一种变体)或图像集(第二种变体)中检测到的一组关键点的描述符。
|
| |
| virtual void | compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) |
| |
| virtual int | defaultNorm () const |
| |
| virtual int | descriptorSize () const |
| |
| virtual int | descriptorType () const |
| |
| virtual void | detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray()) |
| | 在图像(第一种变体)或图像集(第二种变体)中检测关键点。
|
| |
| virtual void | detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray()) |
| |
| virtual void | detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false) |
| |
| virtual bool | empty () const CV_OVERRIDE |
| | 如果检测器对象为空,则返回 true。
|
| |
| virtual void | read (const FileNode &) CV_OVERRIDE |
| | 从文件存储中读取算法参数。
|
| |
| void | read (const String &fileName) |
| |
| void | write (const Ptr< FileStorage > &fs, const String &name) const |
| |
| void | write (const String &fileName) const |
| |
| virtual void | write (FileStorage &) const CV_OVERRIDE |
| | 将算法参数存储到文件存储中。
|
| |
| void | write (FileStorage &fs, const String &name) const |
| |
| | Algorithm () |
| |
| virtual | ~Algorithm () |
| |
| virtual void | clear () |
| | 清除算法状态。
|
| |
| virtual void | save (const String &filename) const |
| |
| void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
| |
| void | write (FileStorage &fs, const String &name) const |
| |
◆ 匿名枚举
| 枚举器 |
|---|
| THRESHOLD | |
| NONMAX_SUPPRESSION | |
| FAST_N | |
◆ DetectorType
| 枚举器 |
|---|
| TYPE_5_8 | |
| TYPE_7_12 | |
| TYPE_9_16 | |
◆ create()
| Python |
|---|
| cv.FastFeatureDetector.create( | [, threshold[, nonmaxSuppression[, type]]] | ) -> | retval |
| cv.FastFeatureDetector_create( | [, threshold[, nonmaxSuppression[, type]]] | ) -> | retval |
◆ getDefaultName()
| virtual String cv::FastFeatureDetector::getDefaultName |
( |
| ) |
const |
|
virtual |
| Python |
|---|
| cv.FastFeatureDetector.getDefaultName( | | ) -> | retval |
返回算法字符串标识符。当对象保存到文件或字符串时,此字符串用作顶级 xml/yml 节点标签。
从 cv::Feature2D 重新实现。
◆ getNonmaxSuppression()
| virtual bool cv::FastFeatureDetector::getNonmaxSuppression |
( |
| ) |
const |
|
纯虚函数 |
| Python |
|---|
| cv.FastFeatureDetector.getNonmaxSuppression( | | ) -> | retval |
◆ getThreshold()
| virtual int cv::FastFeatureDetector::getThreshold |
( |
| ) |
const |
|
纯虚函数 |
| Python |
|---|
| cv.FastFeatureDetector.getThreshold( | | ) -> | retval |
◆ getType()
| Python |
|---|
| cv.FastFeatureDetector.getType( | | ) -> | retval |
◆ setNonmaxSuppression()
| virtual void cv::FastFeatureDetector::setNonmaxSuppression |
( |
bool | ◆ hashtableResize() | ) |
|
|
纯虚函数 |
| Python |
|---|
| cv.FastFeatureDetector.setNonmaxSuppression( | ◆ hashtableResize() | ) -> | 无 |
◆ setThreshold()
| virtual void cv::FastFeatureDetector::setThreshold |
( |
int | RANSAC参数。它是点到像素中对极线的最大距离,超过此距离的点将被视为异常值,不用于计算最终的基本矩阵。它可以设置为1-3左右,具体取决于点定位的精度、图像分辨率和图像噪声。 | ) |
|
|
纯虚函数 |
| Python |
|---|
| cv.FastFeatureDetector.setThreshold( | RANSAC参数。它是点到像素中对极线的最大距离,超过此距离的点将被视为异常值,不用于计算最终的基本矩阵。它可以设置为1-3左右,具体取决于点定位的精度、图像分辨率和图像噪声。 | ) -> | 无 |
◆ setType()
| Python |
|---|
| cv.FastFeatureDetector.setType( | type | ) -> | 无 |
此类文档是从以下文件生成的