OpenCV  4.10.0
开源计算机视觉
加载中...
搜索中...
无匹配项
公共成员函数 | 静态公共成员函数 | 所有成员列表
cv::xfeatures2d::HarrisLaplaceFeatureDetector 类引用抽象

实现 Harris-Laplace 特征检测器的类,如 [192] 中所述。更多...

#include <opencv2/xfeatures2d.hpp>

cv::xfeatures2d::HarrisLaplaceFeatureDetector 的协作图

公共成员函数

虚拟 float getCornThresh () const =0
 
String getDefaultName () const CV_OVERRIDE
 
虚拟 float getDOGThresh () const =0
 
虚拟 int getMaxCorners () const =0
 
虚拟 int getNumLayers () const =0
 
虚拟 int getNumOctaves () const =0
 
虚拟 void setCornThresh (float corn_thresh_)=0
 
虚拟 void setDOGThresh (float DOG_thresh_)=0
 
虚拟 void setMaxCorners (int maxCorners_)=0
 
虚拟 void setNumLayers (int num_layers_)=0
 
虚拟 void setNumOctaves (int numOctaves_)=0
 
- 从 cv::Feature2D 继承的公共成员函数
virtual ~Feature2D ()
 
虚拟 void compute (InputArray image, vector<KeyPoint> &keypoints, OutputArray descriptors)
 计算图像中检测到的关键点(第一个变体)或图像集(第二个变体)的描述符。
 
虚拟 void compute (InputArrayOfArrays images, vector<vector<KeyPoint > > &keypoints, OutputArrayOfArrays descriptors)
 
虚拟 int defaultNorm () const
 
虚拟 int descriptorSize () const
 
虚拟 int descriptorType () const
 
虚拟 void detect (InputArray image, vector<KeyPoint > &keypoints, InputArray mask=noArray())
 检测图像中的关键点(第一个变体)或图像集(第二个变体)。
 
虚拟 void detect (InputArrayOfArrays images, vector<vector<KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray())
 
虚拟 void detectAndCompute (InputArray image, InputArray mask, vector<KeyPoint> &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false)
 
virtual bool empty () const CV_OVERRIDE
 如果检测器对象为空,则返回 true。
 
虚拟 void read (const FileNode &) CV_OVERRIDE
 从文件存储中读取算法参数。
 
void read (const  
void 写入 (const Ptr< 文件存储 > &fs,const 字符串 &name)
 
void 写入 (const 字符串 &fileName) const
 
虚拟 void 写入文件存储 &)const CV_OVERRIDE
 将算法参数存储在文件存储器中。
 
void 写入 (文件存储 &fs,const 字符串 &name) const
 
- 公共成员函数继承自 cv::Algorithm
 算法 ()
 
virtual ~Algorithm ()
 
虚拟 void 清理 ()
 清除算法状态。
 
虚拟 void 保存 (const 字符串 &filename) const
 
void 写入 (const Ptr< 文件存储 > &fs,const 字符串 &name=字符串()) const
 
void 写入 (文件存储 &fs,const 字符串 &name) const
 

静态公共成员函数

static Ptr< HarrisLaplaceFeatureDetector创建 (int numOctaves=6,float corn_thresh=0.01f,float DOG_thresh=0.01f,int maxCorners=5000,int num_layers=4)
 创建一个新的实现实例。
 
- 静态公共成员函数继承自 cv::Algorithm
template<typename _Tp >
static Ptr< _Tpload (const String &filename, const String &objname=String())
 从文件中加载算法。
 
template<typename _Tp >
static Ptr< _TploadFromString (const String &strModel, const String &objname=String())
 从字符串加载算法。
 
template<typename _Tp >
static Ptr< _Tpread (const FileNode &fn)
 从文件节点读取算法。
 

cv::Algorithm 继承的其他成员

- cv::Algorithm 继承的受保护成员函数
void writeFormat (FileStorage &fs) const
 

详细信息

实现类,实现如 [192] 所述的 Harris-Laplace 特征检测器。

成员函数文档

◆ create()

static Ptr< HarrisLaplaceFeatureDetector > cv::xfeatures2d::HarrisLaplaceFeatureDetector::create ( int  numOctaves = 6,
float  corn_thresh = 0.01f,
float  DOG_thresh = 0.01f,
int  maxCorners = 5000,
int  num_layers = 4 
)
static
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.create([, numOctaves[, corn_thresh[, DOG_thresh[, maxCorners[, num_layers]]]]]) -> retval
cv.xfeatures2d.HarrisLaplaceFeatureDetector_create([, numOctaves[, corn_thresh[, DOG_thresh[, maxCorners[, num_layers]]]]]) -> retval

创建一个新的实现实例。

参数
numOctaves尺度空间金字塔中的八度数
corn_threshHarris 角点度量阈值
DOG_thresh高斯差分尺度选择阈值
maxCorners考虑的最大角点数
num_layers每个八度中的中间尺度数

◆ getCornThresh()

virtual float cv::xfeatures2d::HarrisLaplaceFeatureDetector::getCornThresh ( ) const
纯 virtual
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.getCornThresh() -> retval

◆ getDefaultName()

String cv::xfeatures2d::HarrisLaplaceFeatureDetector::getDefaultName ( ) const
virtual
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.getDefaultName() -> retval

返回算法字符串标识符。将对象保存到文件或字符串时,此字符串用作顶级 xml/yml 节点标记。

cv::Feature2D 重新实现。

◆ getDOGThresh()

virtual float cv::xfeatures2d::HarrisLaplaceFeatureDetector::getDOGThresh ( ) const
纯 virtual
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.getDOGThresh() -> retval

◆ getMaxCorners()

virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getMaxCorners ( ) const
纯 virtual
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.getMaxCorners() -> retval

◆ getNumLayers()

virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getNumLayers ( ) const
纯 virtual
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.getNumLayers() -> retval

◆ getNumOctaves()

virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getNumOctaves ( ) const
纯 virtual
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.getNumOctaves() -> retval

◆ setCornThresh()

virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setCornThresh ( float  corn_thresh_)
纯 virtual
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.setCornThresh(corn_thresh_) ->

◆ setDOGThresh()

virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setDOGThresh ( float  DOG_thresh_)
纯 virtual
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.setDOGThresh(DOG_thresh_) ->

◆ setMaxCorners()

virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setMaxCorners ( int  maxCorners_)
纯 virtual
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.setMaxCorners(maxCorners_) ->

◆ setNumLayers()

virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setNumLayers ( int  num_layers_)
纯 virtual
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.setNumLayers(num_layers_) ->

◆ setNumOctaves()

virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setNumOctaves ( int  numOctaves_)
纯 virtual
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.setNumOctaves(numOctaves_) ->

类的文档由此文件生成