OpenCV 4.10.0
开源计算机视觉
|
上一教程: Features2D + 仿射变换来查找已知目标
下一教程: AKAZE 局部特征匹配
原作者 | Victor Eruhimov |
兼容性 | OpenCV >= 3.0 |
本教程的目的是学习如何使用 features2d 和 calib3d 模块检测场景中的已知平面目标。
测试数据:使用数据文件夹中的图像,例如 box.png 和 box_in_scene.png。
Mat img1 = imread(argv[1], IMREAD_GRAYSCALE); Mat img2 = imread(argv[2], IMREAD_GRAYSCALE);
// detecting keypoints Ptr<Feature2D> surf = SURF::create(); vector<KeyPoint> keypoints1; Mat descriptors1; surf->detectAndCompute(img1, Mat(), keypoints1, descriptors1); ... // do the same for the second image
// matching descriptors BruteForceMatcher<L2<float> > matcher; vector<DMatch> matches; matcher.match(descriptors1, descriptors2, matches);
// drawing the results namedWindow("matches", 1); Mat img_matches; drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches); imshow("matches", img_matches); waitKey(0);
vector<Point2f> points1, points2; // fill the arrays with the points .... Mat H = findHomography(Mat(points1), Mat(points2), RANSAC, ransacReprojThreshold);
创建一组内点匹配并绘制它们。使用 perspectiveTransform 函数用单应性映射点
Mat points1Projected; perspectiveTransform(Mat(points1), points1Projected, H);