import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.DMatch;
import org.opencv.core.KeyPoint;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDMatch;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.Scalar;
import org.opencv.features2d.AKAZE;
import org.opencv.features2d.DescriptorMatcher;
import org.opencv.features2d.Features2d;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.w3c.dom.Document;
import org.xml.sax.SAXException;
class AKAZEMatch {
public void run(String[] args) {
String filename1 = args.length > 2 ? args[0] : "../data/graf1.png";
String filename2 = args.length > 2 ? args[1] : "../data/graf3.png";
String filename3 = args.length > 2 ? args[2] : "../data/H1to3p.xml";
Mat img1 = Imgcodecs.imread(filename1, Imgcodecs.IMREAD_GRAYSCALE);
Mat img2 = Imgcodecs.imread(filename2, Imgcodecs.IMREAD_GRAYSCALE);
if (img1.empty() || img2.empty()) {
System.err.println("读取图像失败!");
System.exit(0);
}
File file = new File(filename3);
DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder documentBuilder;
Document document;
Mat homography = new Mat(3, 3, CvType.CV_64F);
double[] homographyData = new double[(int) (homography.total()*homography.channels())];
尝试 {
documentBuilder = documentBuilderFactory.newDocumentBuilder();
document = documentBuilder.parse(file);
String homographyStr = document.getElementsByTagName("data").item(0).getTextContent();
String[] splited = homographyStr.split("\\s+");
int idx = 0;
for (String s : splited) {
if (!s.isEmpty()) {
homographyData[idx] = Double.parseDouble(s);
idx++;
}
}
} 捕获 (ParserConfigurationException e) {
e.printStackTrace();
System.exit(0);
} 捕获 (SAXException e) {
e.printStackTrace();
System.exit(0);
} 捕获 (IOException e) {
e.printStackTrace();
System.exit(0);
}
homography.put(0, 0, homographyData);
AKAZE akaze = AKAZE.create();
MatOfKeyPoint kpts1 = new MatOfKeyPoint(), kpts2 = new MatOfKeyPoint();
Mat desc1 = new Mat(), desc2 = new Mat();
akaze.detectAndCompute(img1, new Mat(), kpts1, desc1);
akaze.detectAndCompute(img2, new Mat(), kpts2, desc2);
描述符匹配器 matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
List<MatOfDMatch> knnMatches = new ArrayList<>();
matcher.knnMatch(desc1, desc2, knnMatches, 2);
float ratioThreshold = 0.8f;
List<KeyPoint> listOfMatched1 = new ArrayList<>();
List<KeyPoint> listOfMatched2 = new ArrayList<>();
List<KeyPoint> listOfKeypoints1 = kpts1.toList();
List<KeyPoint> listOfKeypoints2 = kpts2.toList();
for (int i = 0; i < knnMatches.size(); i++) {
DMatch[] matches = knnMatches.get(i).toArray();
float dist1 = matches[0].distance;
float dist2 = matches[1].distance;
if (dist1 < ratioThreshold * dist2) {
listOfMatched1.add(listOfKeypoints1.get(matches[0].queryIdx));
listOfMatched2.add(listOfKeypoints2.get(matches[0].trainIdx));
}
}
double inlierThreshold = 2.5;
List<KeyPoint> listOfInliers1 = new ArrayList<>();
List<KeyPoint> listOfInliers2 = new ArrayList<>();
List<DMatch> listOfGoodMatches = new ArrayList<>();
for (int i = 0; i < listOfMatched1.size(); i++) {
Mat col = new Mat(3, 1, CvType.CV_64F);
double[] colData = new double[(int) (col.total() * col.channels())];
colData[0] = listOfMatched1.get(i).pt.x;
colData[1] = listOfMatched1.get(i).pt.y;
colData[2] = 1.0;
col.put(0, 0, colData);
Mat colRes = new Mat();
Core.gemm(homography, col, 1.0, new Mat(), 0.0, colRes);
colRes.get(0, 0, colData);
Core.multiply(colRes,
new 标量(1.0 / colData[2]), col);
col.get(0, 0, colData);
双精度类型 dist = Math.sqrt(Math.pow(colData[0] - listOfMatched2.get(i).pt.x, 2) +
Math.pow(colData[1] - listOfMatched2.get(i).pt.y, 2));
如果 (dist < inlierThreshold) {
listOfGoodMatches.add(new DMatch(listOfInliers1.size(), listOfInliers2.size(), 0));
listOfInliers1.add(listOfMatched1.get(i));
listOfInliers2.add(listOfMatched2.get(i));
}
}
Mat res = new Mat();
MatOfKeyPoint inliers1 = new MatOfKeyPoint(listOfInliers1.toArray(new KeyPoint[listOfInliers1.size()]));
MatOfKeyPoint inliers2 = new MatOfKeyPoint(listOfInliers2.toArray(new KeyPoint[listOfInliers2.size()]));
MatOfDMatch goodMatches = new MatOfDMatch(listOfGoodMatches.toArray(new DMatch[listOfGoodMatches.size()]));
Features2d.drawMatches(img1, inliers1, img2, inliers2, goodMatches, res);
Imgcodecs.imwrite("akaze_result.png", res);
双精度类型 inlierRatio = listOfInliers1.size() / (double) listOfMatched1.size();
System.out.println("A-KAZE 匹配结果");
System.out.println("*******************************");
System.out.println("# 关键点 1:\t" + listOfKeypoints1.size());
System.out.println("# 关键点 2:\t" + listOfKeypoints2.size());
System.out.println("# 匹配:\t" + listOfMatched1.size());
System.out.println("# 内点:\t" + listOfInliers1.size());
System.out.println("# 内点比率:\t" + inlierRatio);
HighGui.imshow("result", res);
HighGui.waitKey();
System.exit(0);
}
}
public 类 AKAZEMatchDemo {
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new AKAZEMatch().run(args);
}
}
Scalar_< double > 标量
定义 types.hpp:702