OpenCV  4.10.0
开源计算机视觉
加载中...
搜索中...
无匹配
命名空间 | 类型定义 | 函数
cv::gapi::imgproc 命名空间引用

此命名空间包含 OpenCV ImgProc 模块的 G-API 操作类型。 更多信息...

命名空间

命名空间  cpu
 
命名空间  fluid
 
命名空间  gpu
 
命名空间  ocl
 

类型定义

using ContMethod = ContourApproximationModes
 
using GFindContoursOutput = std::tuple< GArray< GArray< Point > >, GArray< Vec4i > >
 
using GMat2 = std::tuple< GMat, GMat >
 
using GMat3 = std::tuple< GMat, GMat, GMat >
 
using RetrMode = RetrievalModes
 

函数

 G_TYPED_KERNEL (GBayerGR2RGB,< cv::GMat(cv::GMat)>, "org.opencv.imgproc.colorconvert.bayergr2rgb")
 
 G_TYPED_KERNEL (GBGR2Gray,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2gray")
 
 G_TYPED_KERNEL (GBGR2I420,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2i420")
 
 G_TYPED_KERNEL (GBGR2LUV,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2luv")
 
 G_TYPED_KERNEL (GBGR2RGB,< GMat(cv::GMat)>, "org.opencv.imgproc.colorconvert.bgr2rgb")
 
 G_TYPED_KERNEL (GBGR2YUV,< cv::GMat(cv::GMat)>, "org.opencv.imgproc.colorconvert.bgr2yuv")
 
 GBilateralFilter<cv...>(<a class="el" href=df/daa/classcv_1_1GMat.html>cv::GMat(cv::GMat, int, double, double, int)>, "org.opencv.imgproc.filters.bilateralfilter")
 
 GBlur<cv...>(<a class="el" href=df/daa/classcv_1_1GMat.html>cv::GMat(cv::GMat, Size, Point, int, Scalar)>, "org.opencv.imgproc.filters.blur")
 
 G_TYPED_KERNEL (GBoundingRectMat,< GOpaque< Rect >(GMat)>, "org.opencv.imgproc.shape.boundingRectMat")
 
 G_TYPED_KERNEL (GBoundingRectVector32F,< GOpaque< Rect >(GArray< Point2f >)>, "org.opencv.imgproc.shape.boundingRectVector32F")
 
 G_TYPED_KERNEL (GBoundingRectVector32S,< GOpaque< Rect >(GArray< Point2i >)>, "org.opencv.imgproc.shape.boundingRectVector32S")
 
 G_TYPED_KERNEL (GBoxFilter,< GMat(GMat, int, Size, Point, bool, int, Scalar)>, "org.opencv.imgproc.filters.boxfilter")
 
 G_TYPED_KERNEL (GCanny,< GMat(GMat, double, double, int, bool)>, "org.opencv.imgproc.feature.canny")
 
 G_TYPED_KERNEL (GDilate,< GMat(GMat, Mat, Point, int, int, Scalar)>, "org.opencv.imgproc.filters.dilate")
 
 G_TYPED_KERNEL (GEqHist,< GMat(GMat)>, "org.opencv.imgproc.equalizeHist")
 
 G_TYPED_KERNEL (GErode,< GMat(GMat, Mat, Point, int, int, Scalar)>, "org.opencv.imgproc.filters.erode")
 
 G_TYPED_KERNEL (GFilter2D,< GMat(GMat, int, Mat, Point, Scalar, int, Scalar)>, "org.opencv.imgproc.filters.filter2D")
 
 G_TYPED_KERNEL (GFindContours,< GArray< GArray< Point > >(GMat, RetrMode, ContMethod, GOpaque< Point >)>, "org.opencv.imgproc.shape.findContours")
 
 G_TYPED_KERNEL (GFindContoursH,< GFindContoursOutput(GMat, RetrMode, ContMethod, GOpaque< Point >)>, "org.opencv.imgproc.shape.findContoursH")
 
 G_TYPED_KERNEL (GFindContoursHNoOffset,< GFindContoursOutput(GMat, RetrMode, ContMethod)>, "org.opencv.imgproc.shape.findContoursHNoOffset")
 
 G_TYPED KERNEL (GFindContoursNoOffset,< GArray< GArray< Point > >(GMat, RetrMode, ContMethod)>, "org.opencv.imgproc.shape.findContoursNoOffset")
 
 G_TYPED KERNEL (GFitLine2DMat,< GOpaque< Vec4f >(GMat, DistanceTypes, double, double, double)>, "org.opencv.imgproc.shape.fitLine2DMat")
 
 G_TYPED_KERNEL (GFitLine2DVector32F,< GOpaque< Vec4f >(GArray< Point2f >, DistanceTypes, double, double, double)>, "org.opencv.imgproc.shape.fitLine2DVector32F")
 
 G_TYPED_KERNEL (GFitLine2DVector32S,< GOpaque< Vec4f >(GArray< Point2i >, DistanceTypes, double, double, double)>, "org.opencv.imgproc.shape.fitLine2DVector32S")
 
 G_TYPED研学内核 (GFitLine2DVector64F,< GOpaque< Vec4f >(GArray< Point2d >, DistanceTypes, double, double, double)>, "org.opencv.imgproc.shape.fitLine2DVector64F")
 
 G_TYPED研究生内核 (GFitLine3DMat,< GOpaque< Vec6f >(GMat, DistanceTypes, double, double, double)>, "org.opencv.imgproc.shape.fitLine3DMat")
 
 G_TYPED研究生内核 (GFitLine3DVector32F,< GOpaque< Vec6f >(GArray< Point3f >, DistanceTypes, double, double, double)>, "org.opencv.imgproc.shape.fitLine3DVector32F")
 
 G_TYPED研究生内核 (GFitLine3DVector32S,< GOpaque< Vec6f >(GArray< Point3i >, DistanceTypes, double, double, double)>, "org.opencv.imgproc.shape.fitLine3DVector32S")
 
 G_TYPED_KERNEL (GFitLine3DVector64F, < GOpaque< Vec6f >(GArray< Point3d >, DistanceTypes, double, double, double)>, "org.opencv.imgproc.shape.fitLine3DVector64F")
 
 G_TYPED_KERNEL (GGaussBlur, < GMat(GMat, Size, double, double, int, Scalar)>, "org.opencv.imgproc.filters.gaussianBlur")
 
 G_TYPED_KERNEL (GGoodFeatures, < cv::GArray< cv::Point2f >(GMat, int, double, double, Mat, int, bool, double)>, "org.opencv.imgproc.feature.goodFeaturesToTrack")
 
 G_TYPED_KERNEL (GI4202BGR, < GMat(GMat)>, "org.opencv.imgproc.colorconvert.i4202bgr")
 
 G_TYPED_KERNEL (GI4202RGB, < GMat(GMat)>, "org.opencv.imgproc.colorconvert.i4202rgb")
 
 G_TYPED_KERNEL (GLaplacian, < GMat(GMat, int, int, double, double, int)>, "org.opencv.imgproc.filters.laplacian")
 
 G_TYPED_KERNEL (GLUV2BGR, < GMat(GMat)>, "org.opencv.imgproc.colorconvert.luv2bgr")
 
 G_TYPED_KERNEL (GMedianBlur, < GMat(GMat)>, "org.opencv.imgproc.filters.medianBlur")
 
 G_TYPED_KERNEL (GMorphologyEx, < GMat(GMat, MorphTypes, Mat, Point, int, BorderTypes, Scalar)>, "org.opencv.imgproc.filters.morphologyEx")
 
 G_TYPED_KERNEL (GNV12toBGR, < GMat(GMat, GMat)>, "org.opencv.imgproc.colorconvert.nv12tobgr")
 
 G_TYPED_KERNEL (GNV12toBGRp, < GMatP(GMat, GMat)>, "org.opencv.imgproc.colorconvert.nv12tobgrp")
 
 G_TYPED_KERNEL (GNV12toGray, < GMat(GMat, GMat)>, "org.opencv.imgproc.colorconvert.nv12togray")
 
 G_TYPED_KERNEL (GNV12toRGB, < GMat(GMat, GMat)>, "org.opencv.imgproc.colorconvert.nv12torgb")
 
 
 
 G_TYPED_KERNEL (GResize,< GMat(GMat, Size, double, double, int)>, "org.opencv.imgproc.transform.resize")
 
 G_TYPED_KERNEL (GResizeP,< GMatP(GMatP, Size, int)>, "org.opencv.imgproc.transform.resizeP")
 
 G_TYPED_KERNEL (GRGB2Gray,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.rgb2gray")
 
 G_TYPED_KERNEL (GRGB2GrayCustom,< GMat(GMat, float, float, float)>, "org.opencv.imgproc.colorconvert.rgb2graycustom")
 
 G_TYPED_KERNEL (GRGB2HSV,< cv::GMat(cv::GMat)>, "org.opencv.imgproc.colorconvert.rgb2hsv")
 
 G_TYPED_KERNEL (GRGB2I420,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.rgb2i420")
 
 G_TYPED_KERNEL (GRGB2Lab,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.rgb2lab")
 
 G_TYPED_KERNEL (GRGB2YUV,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.rgb2yuv")
 
 G_TYPED_KERNEL (GRGB2YUV422,< cv::GMat(cv::GMat)>, "org.opencv.imgproc.colorconvert.rgb2yuv422")
 
 G_TYPED_KERNEL (GSepFilter,< GMat(GMat, int, Mat, Mat, Point, Scalar, int, Scalar)>, "org.opencv.imgproc.filters.sepfilter")
 
 G_TYPED_KERNEL (GSobel,< GMat(GMat, int, int, int, int, double, double, int, Scalar)>, "org.opencv.imgproc.filters.sobel")
 
 G_TYPED_KERNEL (GYUV2BGR,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.yuv2bgr")
 
 G_TYPED_KERNEL (GYUV2RGB,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.yuv2rgb")
 
 G_TYPED_KERNEL_M (GSobelXY,< GMat2(GMat, int, int, int, double, double, int, Scalar)>, "org.opencv.imgproc.filters.sobelxy")
 

详细描述

该命名空间包含OpenCV ImgProc模块功能性的G-API操作类型。

类型定义文档

◆ ContMethod

◆ GFindContoursOutput

◆ GMat2

使用 cv::gapi::imgproc::GMat2 = typedef std::tuple<GMat,GMat>

◆ GMat3

使用 cv::gapi::imgproc::GMat3 = typedef std::tuple<GMat,GMat,GMat>

◆ RetrMode

函数文档

◆ G_TYPED_KERNEL() [1/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GBayerGR2RGB  ,
< cv::GMat(cv::GMat)>  ,
"org.opencv.imgproc.colorconvert.bayergr2rgb"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [2/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GBGR2Gray  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.colorconvert.bgr2gray"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [3/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GBGR2I420  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.colorconvert.bgr2i420"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [4/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GBGR2LUV  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.colorconvert.bgr2luv"   
)

◆ G_TYPED_KERNEL() [5/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GBGR2RGB  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.colorconvert.bgr2rgb"   
)

◆ G_TYPED_KERNEL() [6/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GBGR2YUV  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.colorconvert.bgr2yuv"   
)

◆ G_TYPED_KERNEL() [7/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GBilateralFilter  ,
< GMat(GMat, int, double, double, int)>  ,
"org.opencv.imgproc.filters.bilateralfilter"   
)

◆ G_TYPED_KERNEL() [8/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GBlur  ,
< GMat(GMat, Size, Point, int, Scalar)>  ,
"org.opencv.imgproc.filters.blur"   
)

◆ G_TYPED_KERNEL() [9/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GBoundingRectMat  ,
< GOpaque< Rect >(GMat)>  ,
"org.opencv.imgproc.shape.boundingRectMat"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [10/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GBoundingRectVector32F  ,
< GOpaque< Rect >(GArray< Point2f >)>  ,
"org.opencv.imgproc.shape.boundingRectVector32F"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [11/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GBoundingRectVector32S  ,
GOpaque< Rect >(GArray< Point2i >)>  ,
"org.opencv.imgproc.shape.boundingRectVector32S"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [12/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GBoxFilter  ,
GMat(GMat, int, Size, Point, bool, int, Scalar)>  ,
"org.opencv.imgproc.filters.boxfilter"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [13/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GCanny  ,
GMat(GMat, double, double, int, bool)>  ,
"org.opencv.imgproc.feature.canny"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [14/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GDilate  ,
GMat(GMat, Mat, Point, int, int, Scalar)>  ,
"org.opencv.imgproc.filters.dilate"   
)

◆ G_TYPED_KERNEL() [15/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GEqHist  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.equalizeHist"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [16/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GErode  ,
GMat(GMat, Mat, Point, int, int, Scalar)>  ,
"org.opencv.imgproc.filters.erode"   
)

◆ G_TYPED_KERNEL() [17/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GFilter2D  ,
GMat(GMat, int, Mat, Point, Scalar, int, Scalar)>  ,
"org.opencv.imgproc.filters.filter2D"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [18/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GFindContours  ,
GArray< GArray< Point > >(GMat, RetrMode, ContMethod, GOpaque< Point >)>  ,
"org.opencv.imgproc.shape.findContours"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [19/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GFindContoursH  ,
GFindContoursOutput(GMat, RetrMode, ContMethod, GOpaque< Point >)>  ,
"org.opencv.imgproc.shape.findContoursH"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [20/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GFindContoursHNoOffset  ,
GFindContoursOutput(GMat, RetrMode, >Method continuum>> ,
"org.opencv.imgproc.shape.findContoursHNoOffset"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [21/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( 查找轮廓无偏移 ,
< GArray< GArray< Point > >(GMat, RetrMode, ContMethod)>  ,
"org.opencv.imgproc.shape.findContoursNoOffset"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [22/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( 拟合线2D图像 ,
< GOpaque< Vec4f >(GArray< Point2f >, DistanceTypes, double, double, double)>  ,
"org.opencv.imgproc.shape.fitLine2DMat"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [23/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( 拟合线2D向量32F ,
< GOpaque< Vec4f >(GArray< Point2f >, DistanceTypes, double, double, double)>  ,
"org.opencv.imgproc.shape.fitLine2DVector32F"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [24/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( 拟合线2D向量32S ,
< GOpaque< Vec4f >(GArray< Point2i >, DistanceTypes, double, double, double)>  ,
"org.opencv.imgproc.shape.fitLine2DVector32S"   
)
以下是此函数的调用图

◆ G_TYPED KERNEL() [25/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( 拟合线2D向量64F ,
< GOpaque< Vec4f >(GArray< Point2d >, DistanceTypes, double, double, double)>  ,
"org.opencv.imgproc.shape.fitLine2DVector64F"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [26/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( 拟合线3D图像 ,
< GOpaque< Vec6f >(GMat, DistanceTypes, double, double, double)>  ,
"org.opencv.imgproc.shape.fitLine3DMat"   
)
以下是此函数的调用图

◆ G_TYPED KERNEL() [27/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( 拟合线3D向量32F ,
< GOpaque< Vec6f >(GArray< Point3f >, DistanceTypes, double, double, double)>  ,
"org.opencv.imgproc.shape.fitLine3DVector32F"   
)
以下是此函数的调用图

◆ G_TYPED KERNEL() [28/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( 拟合线3D向量32S ,
< GOpaque< Vec6f >(GArray< Point3i >, DistanceTypes, double, double, double)>  ,
"org.opencv.imgproc.shape.fitLine3DVector32S"   
)
以下是此函数的调用图

◆ G_TYPED KERNEL() [29/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( 拟合线3D向量64F ,
< GOpaque< Vec6f >(GArray< Point3d >, DistanceTypes, double, double, double)>  ,
"org.opencv.imgproc.shape.fitLine3DVector64F"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [30/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GGaussBlur  ,
< GMat(GMat, Size, double, double, int, Scalar)>  ,
"org.opencv.imgproc.filters.gaussianBlur"   
)

◆ G_TYPED_KERNEL() [31/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GGoodFeatures  ,
< cv::GArray< cv::Point2f >(GMat, int, double, double, Mat, int, bool, double)>  ,
"org.opencv.imgproc.feature.goodFeaturesToTrack"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [32/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GI4202BGR  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.colorconvert.i4202bgr"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [33/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GI4202RGB  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.colorconvert.i4202rgb"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [34/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GLaplacian  ,
< GMat(GMat, int, int, double, double, int)>  ,
"org.opencv.imgproc.filters.laplacian"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [35/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GLUV2BGR  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.colorconvert.luv2bgr"   
)

◆ G_TYPED_KERNEL() [36/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GMedianBlur  ,
< GMat(GMat, int)>  ,
"org.opencv.imgproc.filters.medianBlur"   
)

◆ G_TYPED_KERNEL() [37/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GMorphologyEx  ,
< GMat(GMat, MorphTypes, Mat, Point, int, BorderTypes, Scalar)>  ,
"org.opencv.imgproc.filters.morphologyEx"   
)

◆ G_TYPED_KERNEL() [38/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GNV12toBGR  ,
< GMat(GMat, GMat)>  ,
"org.opencv.imgproc.colorconvert.nv12tobgr"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [39/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GNV12toBGRp  ,
< GMatP(GMat, GMat)>  ,
"org.opencv.imgproc.colorconvert.nv12tobgrp"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [40/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GNV12toGray  ,
< GMat(GMat, GMat)>  ,
"org.opencv.imgproc.colorconvert.nv12togray"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [41/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GNV12toRGB  ,
< GMat(GMat, GMat)>  ,
"org.opencv.imgproc.colorconvert.nv12torgb"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [42/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GNV12toRGBp  ,
< GMatP(GMat, GMat)>  ,
"org.opencv.imgproc.colorconvert.nv12torgbp"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [43/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GResize  ,
< GMat(GMat, Size, double, double, int)>  ,
"org.opencv.imgproc.transform.resize"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [44/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GResizeP  ,
< GMatP(GMatP, Size, int)>  ,
"org.opencv.imgproc.transform.resizeP"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [45/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GRGB2Gray  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.colorconvert.rgb2gray"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [46/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GRGB2GrayCustom  ,
< GMat(GMat, float, float, float)>  ,
"org.opencv.imgproc.colorconvert.rgb2graycustom"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [47/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GRGB2HSV  ,
< cv::GMat(cv::GMat)>  ,
"org.opencv.imgproc.colorconvert.rgb2hsv"   
)

◆ G_TYPED_KERNEL() [48/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GRGB2I420  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.colorconvert.rgb2i420"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [49/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GRGB2Lab  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.colorconvert.rgb2lab"   
)

◆ G_TYPED_KERNEL() [50/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GRGB2YUV  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.colorconvert.rgb2yuv"   
)

◆ G_TYPED_KERNEL() [51/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GRGB2YUV422  ,
< cv::GMat(cv::GMat)>  ,
"org.opencv.imgproc.colorconvert.rgb2yuv422"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [52/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GSepFilter  ,
< GMat(GMat, int, Mat, Mat, Point, Scalar, int, Scalar)>  ,
"org.opencv.imgproc.filters.sepfilter"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [53/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GSobel  ,
< GMat(GMat, int, int, int, int, double, double, int, Scalar)>  ,
"org.opencv.imgproc.filters.sobel"   
)
以下是此函数的调用图

◆ G_TYPED_KERNEL() [54/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GYUV2BGR  ,
< GMat(GMat)>  ,
"org.opencv.imgproc.colorconvert.yuv2bgr"   
)

◆ G_TYPED_KERNEL() [55/55]

cv::gapi::imgproc::G_TYPED_KERNEL ( GYUV2RGB  ,
< GMat(GMat)>  ,
"org.opencv(imgproc.colorconvert.yuv2rgb"   
)

◆ G_TYPED_KERNEL_M()

cv::gapi::imgproc::G_TYPED_KERNEL_M ( GSobelXY  ,
< GMat2(GMat, int, int, int, double, double, int, Scalar)>  ,
"org.opencv.imgproc.filters.sobelxy"   
)
以下是此函数的调用图