#include <opencv2/stitching/detail/matchers.hpp>
|
| BestOf2NearestRangeMatcher (int range_width=5, bool try_use_gpu=false, float match_conf=0.3f, int num_matches_thresh1=6, int num_matches_thresh2=6) |
|
| BestOf2NearestMatcher (bool try_use_gpu=false, float match_conf=0.3f, int num_matches_thresh1=6, int num_matches_thresh2=6, double matches_confindece_thresh=3.) |
| 构造一个“最佳 2 近邻”匹配器。
|
|
void | collectGarbage () CV_OVERRIDE |
| 释放之前分配的未使用的内存(如果有)。
|
|
virtual | ~FeaturesMatcher () |
|
bool | isThreadSafe () const |
|
void | operator() (const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info) |
|
void | operator() (const std::vector< ImageFeatures > &features, std::vector< MatchesInfo > &pairwise_matches, const cv::UMat &mask=cv::UMat()) |
| 执行图像匹配。
|
|
|
static Ptr< BestOf2NearestMatcher > | create (bool try_use_gpu=false, float match_conf=0.3f, int num_matches_thresh1=6, int num_matches_thresh2=6, double matches_confindece_thresh=3.) |
|
◆ BestOf2NearestRangeMatcher()
cv::detail::BestOf2NearestRangeMatcher::BestOf2NearestRangeMatcher |
( |
int | range_width = 5, |
|
|
bool | try_use_gpu = false, |
|
|
float | match_conf = 0.3f, |
|
|
int | num_matches_thresh1 = 6, |
|
|
int | num_matches_thresh2 = 6 ) |
Python |
---|
| cv.detail.BestOf2NearestRangeMatcher( | [, range_width[, try_use_gpu[, match_conf[, num_matches_thresh1[, num_matches_thresh2]]]]] | ) -> | <detail_BestOf2NearestRangeMatcher object> |
◆ match() [1/2]
◆ match() [2/2]
此方法实现逻辑以匹配任意数量特征之间的特征。默认情况下,这会检查输入中的每一对输入,但行为可以由子类更改。
- 参数
-
features | 图像特征向量 |
pairwise_matches | 找到的匹配项 |
mask | (可选) 指示应匹配哪些图像对的掩码 |
从 cv::detail::FeaturesMatcher 重新实现。
◆ range_width_
int cv::detail::BestOf2NearestRangeMatcher::range_width_ |
|
protected |
此类的文档是从以下文件生成的: