OpenCV 4.11.0
开源计算机视觉
加载中...
搜索中...
无匹配项
cv::GFTTDetector 类参考抽象类

使用 goodFeaturesToTrack 函数进行特征检测的包装类。: 更多...

#include <opencv2/features2d.hpp>

cv::GFTTDetector 协作图

公共成员函数

virtual int getBlockSize () const =0
 
virtual String getDefaultName () const CV_OVERRIDE
 
virtual int getGradientSize ()=0
 
virtual bool getHarrisDetector () const =0
 
virtual double getK () const =0
 
virtual int getMaxFeatures () const =0
 
virtual double getMinDistance () const =0
 
virtual double getQualityLevel () const =0
 
virtual void setBlockSize (int blockSize)=0
 
virtual void setGradientSize (int gradientSize_)=0
 
virtual void setHarrisDetector (bool val)=0
 
virtual void setK (double k)=0
 
virtual void setMaxFeatures (int maxFeatures)=0
 
virtual void setMinDistance (double minDistance)=0
 
virtual void setQualityLevel (double qlevel)=0
 
- 继承自 cv::Feature2D 的公共成员函数
virtual ~Feature2D ()
 
virtual void compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors)
 计算在图像(第一种变体)或图像集(第二种变体)中检测到的一组关键点的描述符。
 
virtual void compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors)
 
virtual int defaultNorm () const
 
virtual int descriptorSize () const
 
virtual int descriptorType () const
 
virtual void detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray())
 检测图像(第一种变体)或图像集(第二种变体)中的关键点。
 
virtual void detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray())
 
virtual void detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false)
 
virtual bool empty () const CV_OVERRIDE
 如果检测器对象为空,则返回 true。
 
virtual void read (const FileNode &) CV_OVERRIDE
 从文件存储中读取算法参数。
 
void read (const String &fileName)
 
void write (const Ptr< FileStorage > &fs, const String &name) const
 
void write (const String &fileName) const
 
virtual void write (FileStorage &) const CV_OVERRIDE
 将算法参数存储到文件存储中。
 
void write (FileStorage &fs, const String &name) const
 
- 继承自 cv::Algorithm 的公共成员函数
 Algorithm ()
 
virtual ~Algorithm ()
 
virtual void clear ()
 清除算法状态。
 
virtual void save (const String &filename) const
 
void write (const Ptr< FileStorage > &fs, const String &name=String()) const
 
void write (FileStorage &fs, const String &name) const
 

静态公共成员函数

static Ptr< GFTTDetectorcreate (int maxCorners, double qualityLevel, double minDistance, int blockSize, int gradiantSize, bool useHarrisDetector=false, double k=0.04)
 
static Ptr< GFTTDetectorcreate (int maxCorners=1000, double qualityLevel=0.01, double minDistance=1, int blockSize=3, bool useHarrisDetector=false, double k=0.04)
 
- 继承自cv::Algorithm的静态公有成员函数
模板<typename _Tp >
静态 Ptr< _Tpload (const String &filename, const String &objname=String())
 从文件中加载算法。
 
模板<typename _Tp >
静态 Ptr< _TploadFromString (const String &strModel, const String &objname=String())
 从字符串加载算法。
 
模板<typename _Tp >
静态 Ptr< _Tpread (const FileNode &fn)
 从文件节点读取算法。
 

其他继承成员

- 继承自cv::Algorithm的保护成员函数
void writeFormat (FileStorage &fs) const
 

详细描述

使用goodFeaturesToTrack函数进行特征检测的包装类。

成员函数文档

◆ create() [1/2]

静态 Ptr< GFTTDetector > cv::GFTTDetector::create ( int maxCorners,
double qualityLevel,
double minDistance,
int blockSize,
int gradiantSize,
bool useHarrisDetector = false,
double k = 0.04 )
静态
Python
cv.GFTTDetector.create([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> 返回值
cv.GFTTDetector.create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]]) -> 返回值
cv.GFTTDetector_create([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> 返回值
cv.GFTTDetector_create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]]) -> 返回值

◆ create() [2/2]

静态 Ptr< GFTTDetector > cv::GFTTDetector::create ( int maxCorners = 1000,
double qualityLevel = 0.01,
double minDistance = 1,
int blockSize = 3,
bool useHarrisDetector = false,
double k = 0.04 )
静态
Python
cv.GFTTDetector.create([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> 返回值
cv.GFTTDetector.create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]]) -> 返回值
cv.GFTTDetector_create([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> 返回值
cv.GFTTDetector_create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]]) -> 返回值

◆ getBlockSize()

虚函数 int cv::GFTTDetector::getBlockSize ( ) const
纯虚函数
Python
cv.GFTTDetector.getBlockSize() -> 返回值

◆ getDefaultName()

虚函数 String cv::GFTTDetector::getDefaultName ( ) const
虚函数
Python
cv.GFTTDetector.getDefaultName() -> 返回值

返回算法字符串标识符。将对象保存到文件或字符串时,此字符串用作顶级 xml/yml 节点标签。

cv::Feature2D重新实现。

◆ getGradientSize()

虚函数 int cv::GFTTDetector::getGradientSize ( )
纯虚函数
Python
cv.GFTTDetector.getGradientSize() -> 返回值

◆ getHarrisDetector()

虚函数 bool cv::GFTTDetector::getHarrisDetector ( ) const
纯虚函数
Python
cv.GFTTDetector.getHarrisDetector() -> 返回值

◆ getK()

虚函数 double cv::GFTTDetector::getK ( ) const
纯虚函数
Python
cv.GFTTDetector.getK() -> 返回值

◆ getMaxFeatures()

虚函数 int cv::GFTTDetector::getMaxFeatures ( ) const
纯虚函数
Python
cv.GFTTDetector.getMaxFeatures() -> 返回值

◆ getMinDistance()

虚函数 double cv::GFTTDetector::getMinDistance ( ) const
纯虚函数
Python
cv.GFTTDetector.getMinDistance() -> 返回值

◆ getQualityLevel()

虚函数 double cv::GFTTDetector::getQualityLevel ( ) const
纯虚函数
Python
cv.GFTTDetector.getQualityLevel() -> 返回值

◆ setBlockSize()

虚函数 void cv::GFTTDetector::setBlockSize ( int blockSize)
纯虚函数
Python
cv.GFTTDetector.setBlockSize(blockSize) ->

◆ setGradientSize()

虚函数 void cv::GFTTDetector::setGradientSize ( int gradientSize_)
纯虚函数
Python
cv.GFTTDetector.setGradientSize(gradientSize_) ->

◆ setHarrisDetector()

虚函数 void cv::GFTTDetector::setHarrisDetector ( bool val)
纯虚函数
Python
cv.GFTTDetector.setHarrisDetector(val) ->

◆ setK()

虚函数 void cv::GFTTDetector::setK ( double k)
纯虚函数
Python
cv.GFTTDetector.setK(k) ->

◆ setMaxFeatures()

虚函数 void cv::GFTTDetector::setMaxFeatures ( int maxFeatures)
纯虚函数
Python
cv.GFTTDetector.setMaxFeatures(maxFeatures) ->

◆ setMinDistance()

虚函数 void cv::GFTTDetector::setMinDistance ( double minDistance)
纯虚函数
Python
cv.GFTTDetector.setMinDistance(minDistance) ->

◆ setQualityLevel()

虚函数 void cv::GFTTDetector::setQualityLevel ( double qlevel)
纯虚函数
Python
cv.GFTTDetector.setQualityLevel(qlevel) ->

此类的文档是从以下文件生成的: