实现 Harris-Laplace 特征检测器,如 [195] 中所述。 更多...
#include <opencv2/xfeatures2d.hpp>
|
| virtual float | getCornThresh () const =0 |
| |
| String | getDefaultName () const CV_OVERRIDE |
| |
| virtual float | getDOGThresh () const =0 |
| |
| virtual int | getMaxCorners () const =0 |
| |
| virtual int | getNumLayers () const =0 |
| |
| virtual int | getNumOctaves () const =0 |
| |
| virtual void | setCornThresh (float corn_thresh_)=0 |
| |
| virtual void | setDOGThresh (float DOG_thresh_)=0 |
| |
| virtual void | setMaxCorners (int maxCorners_)=0 |
| |
| virtual void | setNumLayers (int num_layers_)=0 |
| |
| virtual void | setNumOctaves (int numOctaves_)=0 |
| |
| virtual | ~Feature2D () |
| |
| virtual void | compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors) |
| | 计算图像(第一种变体)或图像集(第二种变体)中检测到的一组关键点的描述符。
|
| |
| virtual void | compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) |
| |
| virtual int | defaultNorm () const |
| |
| virtual int | descriptorSize () const |
| |
| virtual int | descriptorType () const |
| |
| virtual void | detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray()) |
| | 在图像(第一种变体)或图像集(第二种变体)中检测关键点。
|
| |
| virtual void | detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray()) |
| |
| virtual void | detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false) |
| |
| virtual bool | empty () const CV_OVERRIDE |
| | 如果检测器对象为空,则返回 true。
|
| |
| virtual void | read (const FileNode &) CV_OVERRIDE |
| | 从文件存储中读取算法参数。
|
| |
| void | read (const String &fileName) |
| |
| void | write (const Ptr< FileStorage > &fs, const String &name) const |
| |
| void | write (const String &fileName) const |
| |
| virtual void | write (FileStorage &) const CV_OVERRIDE |
| | 将算法参数存储到文件存储中。
|
| |
| void | write (FileStorage &fs, const String &name) const |
| |
| | Algorithm () |
| |
| virtual | ~Algorithm () |
| |
| virtual void | clear () |
| | 清除算法状态。
|
| |
| virtual void | save (const String &filename) const |
| |
| void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
| |
| void | write (FileStorage &fs, const String &name) const |
| |
实现 Harris-Laplace 特征检测器,如 [195] 中所述。
◆ create()
| static Ptr< HarrisLaplaceFeatureDetector > cv::xfeatures2d::HarrisLaplaceFeatureDetector::create |
( |
int | numOctaves = 6, |
|
|
float | corn_thresh = 0.01f, |
|
|
float | DOG_thresh = 0.01f, |
|
|
int | maxCorners = 5000, |
|
|
int | num_layers = 4 ) |
|
static |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.create( | [, numOctaves[, corn_thresh[, DOG_thresh[, maxCorners[, num_layers]]]]] | ) -> | retval |
| cv.xfeatures2d.HarrisLaplaceFeatureDetector_create( | [, numOctaves[, corn_thresh[, DOG_thresh[, maxCorners[, num_layers]]]]] | ) -> | retval |
创建新的实现实例。
- 参数
-
| numOctaves | 尺度空间金字塔中的八度音阶数 |
| corn_thresh | Harris 角点响应的阈值 |
| DOG_thresh | 高斯差分尺度选择的阈值 |
| maxCorners | 要考虑的最大角点数 |
| num_layers | 每个八度音阶的中间尺度数 |
◆ getCornThresh()
| virtual float cv::xfeatures2d::HarrisLaplaceFeatureDetector::getCornThresh |
( |
| ) |
const |
|
纯虚函数 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getCornThresh( | | ) -> | retval |
◆ getDefaultName()
| String cv::xfeatures2d::HarrisLaplaceFeatureDetector::getDefaultName |
( |
| ) |
const |
|
virtual |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getDefaultName( | | ) -> | retval |
返回算法字符串标识符。当对象保存到文件或字符串时,此字符串用作顶级 xml/yml 节点标签。
从 cv::Feature2D 重新实现。
◆ getDOGThresh()
| virtual float cv::xfeatures2d::HarrisLaplaceFeatureDetector::getDOGThresh |
( |
| ) |
const |
|
纯虚函数 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getDOGThresh( | | ) -> | retval |
◆ getMaxCorners()
| virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getMaxCorners |
( |
| ) |
const |
|
纯虚函数 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getMaxCorners( | | ) -> | retval |
◆ getNumLayers()
| virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getNumLayers |
( |
| ) |
const |
|
纯虚函数 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getNumLayers( | | ) -> | retval |
◆ getNumOctaves()
| virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getNumOctaves |
( |
| ) |
const |
|
纯虚函数 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getNumOctaves( | | ) -> | retval |
◆ setCornThresh()
| virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setCornThresh |
( |
float | corn_thresh_ | ) |
|
|
纯虚函数 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setCornThresh( | corn_thresh_ | ) -> | 无 |
◆ setDOGThresh()
| virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setDOGThresh |
( |
float | DOG_thresh_ | ) |
|
|
纯虚函数 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setDOGThresh( | DOG_thresh_ | ) -> | 无 |
◆ setMaxCorners()
| virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setMaxCorners |
( |
int | maxCorners_ | ) |
|
|
纯虚函数 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setMaxCorners( | maxCorners_ | ) -> | 无 |
◆ setNumLayers()
| virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setNumLayers |
( |
int | num_layers_ | ) |
|
|
纯虚函数 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setNumLayers( | num_layers_ | ) -> | 无 |
◆ setNumOctaves()
| virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setNumOctaves |
( |
int | numOctaves_ | ) |
|
|
纯虚函数 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setNumOctaves( | numOctaves_ | ) -> | 无 |
此类文档由以下文件生成