OpenCV  4.10.0
开源计算机视觉
正在加载...
正在搜索...
无匹配
| 函数
形状距离和匹配

详细描述

类  cv::AffineTransformer
 OpenCV 仿射变换算法的包装类。: 更多...
 
类  cv::ChiHistogramCostExtractor
 基于 Chi 的成本提取。: 更多...
 
类  cv::EMDHistogramCostExtractor
 基于 EMD 的成本提取。: 更多...
 
类  cv::EMDL1HistogramCostExtractor
 基于 EMD-L1 的成本提取。: 更多...
 
类  cv::HausdorffDistanceExtractor
 由轮廓定义的形状之间的简单豪斯多夫距离度量。 更多...
 
类  cv::HistogramCostExtractor
 直方图成本算法的抽象基类。 更多...
 
类  cv::NormHistogramCostExtractor
 基于范数的成本提取。: 更多...
 
类  cv::ShapeContextDistanceExtractor
 形状上下文描述符和匹配算法的实现。 更多...
 
类  cv::ShapeDistanceExtractor
 形状距离算法的抽象基类。 更多...
 
类  cv::ShapeTransformer
 形状变换算法的抽象基类。 更多...
 
类  cv::ThinPlateSplineShapeTransformer
 变换的定义。 更多...
 

函数

Ptr< AffineTransformercv::createAffineTransformer (bool fullAffine)
 
Ptr< HistogramCostExtractorcv::createChiHistogramCostExtractor (int nDummies=25, float defaultCost=0.2f)
 
Ptr< HistogramCostExtractorcv::createEMDHistogramCostExtractor (int flag=DIST_L2, int nDummies=25, float defaultCost=0.2f)
 
Ptr< HistogramCostExtractorcv::createEMDL1HistogramCostExtractor (int nDummies=25, float defaultCost=0.2f)
 
Ptr< HausdorffDistanceExtractorcv::createHausdorffDistanceExtractor (int distanceFlag=cv::NORM_L2, float rankProp=0.6f)
 
Ptr< HistogramCostExtractorcv::createNormHistogramCostExtractor (int flag=DIST_L2, int nDummies=25, float defaultCost=0.2f)
 
Ptr< ShapeContextDistanceExtractorcv::createShapeContextDistanceExtractor (int nAngularBins=12, int nRadialBins=4, float innerRadius=0.2f, float outerRadius=2, int iterations=3, const Ptr< HistogramCostExtractor > &comparer=createChiHistogramCostExtractor(), const Ptr< ShapeTransformer > &transformer=createThinPlateSplineShapeTransformer())
 
Ptr< ThinPlateSplineShapeTransformercv::createThinPlateSplineShapeTransformer (double regularizationParameter=0)
 
float cv::EMDL1 (InputArray signature1, InputArray signature2)
 根据论文“EMD-L1:一种比较基于直方图的描述符的有效且稳健的算法”,由 Haibin Ling 和 Kazunori Okuda 撰写;以及“地球移动距离是 Mallows 距离:来自统计学的一些见解”,由 Elizaveta Levina 和 Peter Bickel 撰写,计算两个加权点配置之间的“最小工作”距离。
 

函数文档

◆ createAffineTransformer()

Ptr< AffineTransformer > cv::createAffineTransformer ( bool  fullAffine)
Python
cv.createAffineTransformer(fullAffine) -> retval

#include <opencv2/shape/shape_transformer.hpp>

完整的构造函数

◆ createChiHistogramCostExtractor()

Ptr< HistogramCostExtractor > cv::createChiHistogramCostExtractor ( int  nDummies = 25,
float  defaultCost = 0.2f 
)
Python
cv.createChiHistogramCostExtractor([, nDummies[, defaultCost]]) -> retval

◆ createEMDHistogramCostExtractor()

Ptr< HistogramCostExtractor > cv::createEMDHistogramCostExtractor ( int  flag = DIST_L2,
int  nDummies = 25,
float  defaultCost = 0.2f 
)
Python
cv.createEMDHistogramCostExtractor([, flag[, nDummies[, defaultCost]]]) -> retval

◆ createEMDL1HistogramCostExtractor()

Ptr< HistogramCostExtractor > cv::createEMDL1HistogramCostExtractor ( int  nDummies = 25,
float  defaultCost = 0.2f 
)
Python
cv.createEMDL1HistogramCostExtractor([, nDummies[, defaultCost]]) -> retval

◆ createHausdorffDistanceExtractor()

Ptr< HausdorffDistanceExtractor > cv::createHausdorffDistanceExtractor ( int  distanceFlag = cv::NORM_L2,
float  rankProp = 0.6f 
)
Python
cv.createHausdorffDistanceExtractor([, distanceFlag[, rankProp]]) -> retval

◆ createNormHistogramCostExtractor()

Ptr< HistogramCostExtractor > cv::createNormHistogramCostExtractor ( int  flag = DIST_L2,
int  nDummies = 25,
float  defaultCost = 0.2f 
)
Python
cv.createNormHistogramCostExtractor([, flag[, nDummies[, defaultCost]]]) -> retval

◆ createShapeContextDistanceExtractor()

Ptr< ShapeContextDistanceExtractor > cv::createShapeContextDistanceExtractor ( int  nAngularBins = 12,
int  nRadialBins = 4,
float  innerRadius = 0.2f,
float  outerRadius = 2,
int  iterations = 3,
const Ptr< HistogramCostExtractor > &  comparer = createChiHistogramCostExtractor(),
const Ptr< ShapeTransformer > &  transformer = createThinPlateSplineShapeTransformer() 
)
Python
cv.createShapeContextDistanceExtractor([, nAngularBins[, nRadialBins[, innerRadius[, outerRadius[, iterations[, comparer[, transformer]]]]]]]) -> retval

◆ createThinPlateSplineShapeTransformer()

Ptr< ThinPlateSplineShapeTransformer > cv::createThinPlateSplineShapeTransformer ( double  regularizationParameter = 0)
Python
cv.createThinPlateSplineShapeTransformer([, regularizationParameter]) -> retval

#include <opencv2/shape/shape_transformer.hpp>

完整的构造函数

◆ EMDL1()

float cv::EMDL1 ( InputArray  signature1,
InputArray  signature2 
)

#include <opencv2/shape/emdL1.hpp>

根据论文“EMD-L1:一种比较基于直方图的描述符的有效且稳健的算法”,由 Haibin Ling 和 Kazunori Okuda 撰写;以及“地球移动距离是 Mallows 距离:来自统计学的一些见解”,由 Elizaveta Levina 和 Peter Bickel 撰写,计算两个加权点配置之间的“最小工作”距离。

参数
signature1第一个签名,一个单列浮点矩阵。 每一行是直方图在每个 bin 中的值。
signature2与 signature1 格式和大小相同的第二个签名。