OpenCV  4.10.0
开源计算机视觉
加载中...
搜索中...
无匹配
命名空间 | 类型定义 | 函数
imgproc.hpp 文件参考
#include <opencv2/imgproc.hpp>
#include <utility>
#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/gscalar.hpp>
imgproc.hpp 的包含依赖图
此图显示了直接或间接包含此文件的文件

命名空间

命名空间  cv
 代表磁盘上与文件关联的文件存储的“黑盒”表示。
 
命名空间  cv::gapi
 
命名空间  cv::gapi::imgproc
 此命名空间包含 OpenCV ImgProc 模块功能的 G-API 操作类型。
 

类型定义

using  cv::gapi::imgproc::ContMethod = ContourApproximationModes
 
using  cv::gapi::imgproc::GFindContoursOutput = std::tuple< GArray< GArray< Point > >, GArray< Vec4i > >
 
using  cv::gapi::imgproc::GMat2 = std::tuple< GMat, GMat >
 
using  cv::gapi::imgproc::GMat3 = std::tuple< GMat, GMat, GMat >
 
using  cv::gapi::imgproc::RetrMode = RetrievalModes
 

函数

GMat cv::gapi::BayerGR2RGB (const GMat &src_gr)
 将图像从 BayerGR 色彩空间转换为 RGB。该函数将输入图像从 BayerGR 色彩空间转换为 RGB。G、R 和 B 通道值的传统范围是 0 到 255。
 
GMat cv::gapi::BGR2Gray (const GMat &src)
 将图像从 BGR 色彩空间转换为灰度。
 
GMat cv::gapi::BGR2I420 (const GMat &src)
 将图像从 BGR 色彩空间转换为 I420 色彩空间。
 
GMat cv::gapi::BGR2LUV (const GMat &src)
 将图像从 BGR 色彩空间转换为 LUV 色彩空间。
 
GMat cv::gapi::BGR2RGB (const GMat &src)
 将图像从 BGR 色彩空间转换为 RGB 色彩空间。
 
GMat cv::gapi::BGR2YUV (const GMat &src)
 将图像从 BGR 色彩空间转换为 YUV 色彩空间。
 
GMat cv::gapi::bilateralFilter (const GMat &src, int d, double sigmaColor, double sigmaSpace, int borderType=BORDER_DEFAULT)
 对图像应用双边滤波器。
 
GMat cv::gapi::blur (const GMat &src, const Size &ksize, const Point &anchor=Point(-1,-1), int borderType=BORDER_DEFAULT, const Scalar &borderValue=Scalar(0))
 使用归一化盒子滤波器模糊图像。
 
GOpaque< Rectcv::gapi::boundingRect (const GArray< Point2f > &src)
 
GOpaque< Rectcv::gapi::boundingRect (const GArray< Point2i > &src)
 
GOpaque< Rectcv::gapi::boundingRect (const GMat &src)
 计算点集或灰度图像非零像素的上边界矩形。
 
GMat cv::gapi::boxFilter (const GMat &src, int dtype, const Size &ksize, const Point &anchor=Point(-1,-1), bool normalize=true, int borderType=BORDER_DEFAULT, const Scalar &borderValue=Scalar(0))
 使用盒子滤波器模糊图像。
 
GMat cv::gapi::Canny (const GMat &image, double threshold1, double threshold2, int apertureSize=3, bool L2gradient=false)
 使用Canny算法在图像中查找边缘。
 
GMat cv::gapi::dilate (const GMat &src, const Mat &kernel, const Point &anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar &borderValue=morphologyDefaultBorderValue())
 通过特定结构元素膨胀图像。
 
GMat cv::gapi::dilate3x3 (const GMat &src, int iterations=1, int borderType=BORDER_CONSTANT, const Scalar &borderValue=morphologyDefaultBorderValue())
 通过3x3矩形结构元素膨胀图像。
 
GMat cv::gapi::equalizeHist (const GMat &src)
 
GMat cv::gapi::erode (const GMat &src, const Mat &kernel, const Point &anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar &borderValue=morphologyDefaultBorderValue())
 使用特定结构元素腐蚀图像。
 
GMat cv::gapi::erode3x3 (const GMat &src, int iterations=1, int borderType=BORDER_CONSTANT, const Scalar &borderValue=morphologyDefaultBorderValue)
 使用3x3矩形结构元素腐蚀图像。
 
GMat cv::gapi::filter2D (const GMat &src, int ddepth, const Mat &kernel, const Point &anchor=Point(-1,-1), const Scalar &delta=Scalar(0), int borderType=BORDER_DEFAULT, const Scalar &borderValue=Scalar(0))
 使用核函数对图像进行卷积。
 
GArray< GArray< Point > > cv::gapi::findContours (const GMat &src, const RetrievalModes mode, const ContourApproximationModes method)
 
GArray< GArray< Point > > cv::gapi::findContours (const GMat &src, const RetrievalModes mode, const ContourApproximationModes method, const GOpaque< Point > &offset)
 在二值图像中查找轮廓。
 
std::tuple< GArray< GArray< Point > >, GArray< Vec4i > > cv::gapi::findContoursH (const GMat &src, const RetrievalModes mode, const ContourApproximationModes method)
 
std::tuple< GArray< GArray< Point > >, GArray< Vec4i > > cv::gapi::findContoursH (const GMat &src, const RetrievalModes mode, const ContourApproximationModes method, const GOpaque< Point > &offset)
 在二值图像中查找轮廓及其层次结构。
 
GOpaque< Vec4fcv::gapi::fitLine2D (const GArray< Point2d > &src, const DistanceTypes distType, const double param=0., const double reps=0., const double aeps=0.)
 
GOpaque< Vec4fcv::gapi::fitLine2D (const GArray< Point2f > &src, const DistanceTypes distType, const double param=0., const double reps=0., const double aeps=0.)
 
GOpaque< Vec4fcv::gapi::fitLine2D (const GArray< Point2i > &src, const DistanceTypes distType, const double param=0., const double reps=0., const double aeps=0.)
 
GOpaque< Vec4fcv::gapi::fitLine2D (const GMat &src, const DistanceTypes distType, const double param=0., const double reps=0., const double aeps=0.)
 将直线拟合到二维点集。
 
GOpaque< Vec6fcv::gapi::fitLine3D (const GArray< Point3d > &src, const DistanceTypes distType, const double param=0., const double reps=0., const double aeps=0.)
 
GOpaque< Vec6fcv::gapi::fitLine3D (const GArray< Point3f > &src, const DistanceTypes distType, const double param=0., const double reps=0., const double aeps=0.)
 
GOpaque< Vec6fcv::gapi::fitLine3D (const GArray< Point3i > &src, const DistanceTypes distType, const double param=0., const double reps=0., const double aeps=0.)
 
GOpaque< Vec6fcv::gapi::fitLine3D (const GMat &src, const DistanceTypes distType, const double param=0., const double reps=0., const double aeps=0.)
 将直线拟合到三维点集。
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GBayerGR2RGB,< cv::GMat(cv::GMat)>, "org.opencv.imgproc.colorconvert.bayergr2rgb")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GBGR2Gray,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2gray")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GBGR2I420,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2i420")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GBGR2LUV,< GMat(cv::GMat)>, "org.opencv.imgproc.colorconvert.bgr2luv")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GBGR2RGB,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2rgb")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GBGR2YUV,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2yuv")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GBilateralFilter,< GMat(GMat, int, double, double, int)>, "org.opencv.imgproc.filters.bilateralfilter")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GBlur,< GMat(GMat, Size, Point, int, Scalar)>, "org.opencv.imgproc.filters.blur")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GBoundingRectMat,< GOpaque< Rect >(GMat)>, "org.opencv.imgproc.shape.boundingRectMat")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GBoundingRectVector32F,< GOpaque< Rect >(GArray< Point2f >)>, "org.opencv.imgproc.shape.boundingRectVector32F")
 
 cv::گپای::imgproc::G_TYPED KERNEL (GBoundingRectVector32S,< GOpaque< Rect >(GArray< Point2i >)>, "org.opencv.imgproc.shape.boundingRectVector32S")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GBoxFilter,< GMat(GMat, int, Size, Point, bool, int, Scalar)>, "org.opencv.imgproc.filters.boxfilter")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GCanny,< GMat(GMat, double, double, int, bool)>, "org.opencv.imgproc.feature.canny")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GDilate,< GMat(GMat, Mat, Point, int, int, Scalar)>, "org.opencv.imgproc.filters.dilate")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GEqHist,< GMat(GMat)>, "org.opencv.imgproc.equalizeHist")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GErode,< GMat(GMat, Mat, Point, int, int, Scalar)>, "org.opencv.imgproc.filters.erode")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GFilter2D,< cv_1_1GMat(cv_1_1GMat, int, cv_1_1Mat, 点, 标量, int, 标量)>, "org.opencv.imgproc.filters.filter2D")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GFindContours,< cv_1_1GArray>(cv_1_1GMat, 形态学恢复模式, 形态学操作方法, cv_1_1GOpaque<点>>)>, "org.opencv.imgproc.shape.findContours")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GFindContoursH,< GFindContoursOutput(cv_1_1GMat, 形态学恢复模式, 形态学操作方法, cv_1_1GOpaque<点>>)>, "org.opencv.imgproc.shape.findContoursH")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GFindContoursHNoOffset,< GFindContoursOutput(cv_1_1GMat, 形态学恢复模式, 形态学操作方法)>, "org.opencv.imgproc.shape.findContoursHNoOffset")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GFindContoursNoOffset,< cv_1_1GArray>>, "org.opencv.imgproc.shape.findContoursNoOffset")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GFitLine2DMat,< cv_1_1GOpaque(cv_1_1GMat, 距离类型, 双精度, 双精度, 双精度)>, "org.opencv.imgproc.shape.fitLine2DMat")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GFitLine2DVector32F,< cv_1_1GOpaque(cv_1_1GArray<点2f>, 距离类型, 双精度, 双精度, 双精度)>, "org.opencv.imgproc.shape.fitLine2DVector32F")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GFitLine2DVector32S,< cv_1_1GOpaque(cv_1_1GArray<点2i>, 距离类型, 双精度, 双精度, 双精度)>, "org.opencv.imgproc.shape.fitLine2DVector32S")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GFitLine2DVector64F,<GOpaque<Vec4f>(GArray<Point2d>, DistanceTypes, double, double, double)>, "org.opencv.imgproc.shape.fitLine2DVector64F")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GFitLine3DMat,<GOpaque<Vec6f>(GMat, DistanceTypes, double, double, double)>, "org.opencv.imgproc.shape.fitLine3DMat")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GFitLine3DVector32F,<GOpaque<Vec6f>(GArray<Point3f>, DistanceTypes, double, double, double)>, "org.opencv.imgproc.shape.fitLine3DVector32F")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GFitLine3DVector32S,<GOpaque<Vec6f>(GArray<Point3i>, DistanceTypes, double, double, double)>, "org.opencv.imgproc.shape.fitLine3DVector32S")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GFitLine3DVector64F,<GOpaque<Vec6f>(GArray<Point3d>, DistanceTypes, double, double, double)>, "org.opencv.imgproc.shape.fitLine3DVector64F")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GGaussBlur,<GMat(GMat, Size, double, double, int, Scalar)>, "org.opencv.imgproc.filters.gaussianBlur")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GGoodFeatures,<cv::GArray<cv::Point2f>(GMat, int, double, double, cv::Mat, int, bool, double)>, "org.opencv.imgproc.feature.goodFeaturesToTrack")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GI4202BGR,<GMat(GMat)>, "org.opencv.imgproc.colorconvert.i4202bgr")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GI4202RGB,<GMat(GMat)>, "org.opencv.imgproc.colorconvert.i4202rgb")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GLaplacian,<GMat(GMat, int, int, double, double, int)>, "org.opencv.imgproc.filters.laplacian")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GLUV2BGR,<GMat(GMat)>, "org.opencv.imgproc.colorconvert.luv2bgr")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GMedianBlur,<GMat(GMat, int)>, "org.opencv.imgproc.filters.medianBlur")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GMorphologyEx,< GMat(GMat, MorphTypes, Mat, Point, int, BorderTypes, Scalar)>, "org.opencv.imgproc.filters.morphologyEx")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GNV12toBGR,< GMat(GMat, GMat)>, "org.opencv.imgproc.colorconvert.nv12tobgr")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GNV12toBGRp,< GMatP(GMat, GMat)>, "org.opencv.imgproc.colorconvert.nv12tobgrp")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GNV12toGray,< GMat(GMat, GMat)>, "org.opencv.imgproc.colorconvert.nv12togray")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GNV12toRGB,< GMat(GMat, GMat)>, "org.opencv.imgproc.colorconvert.nv12torgb")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GNV12toRGBp,< cv_1_1GMatP(cv_1_1GMat, cv_1_1GMat)>, "org.opencv.imgproc.colorconvert.nv12torgbp")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GResize,< cv_1_1GMat(cv_1_1GMat, Size, double, double, int)>, "org.opencv.imgproc.transform.resize")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GResizeP,< cv_1_1GMatP(cv_1_1GMatP, Size, int)>, "org.opencv.imgproc.transform.resizeP")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GRGB2Gray,< cv_1_1GMat(cv_1_1GMat)>, "org.opencv.imgproc.colorconvert.rgb2gray")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GRGB2GrayCustom,< cv_1_1GMat(cv_1_1GMat, float, float, float)>, "org.opencv.imgproc.colorconvert.rgb2graycustom")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GRGB2HSV,< cv_1_1GMat(cv_1_1GMat)>, "org.opencv.imgproc.colorconvert.rgb2hsv")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GRGB2I420,< cv_1_1GMat(cv_1_1GMat)>, "org.opencv.imgproc.colorconvert.rgb2i420")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GRGB2Lab,< cv_1_1GMat(cv_1_1GMat)>, "org.opencv.imgproc.colorconvert.rgb2lab")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GRGB2YUV,< cv_1_1GMat(cv_1_1GMat)>, "org.opencv.imgproc.colorconvert.rgb2yuv")
 
 cv::gapi::imgproc::G_TYPED KERNEL (GRGB2YUV422,< cv_1_1GMat(cv_1_1GMat)>, "org.opencv.imgproc.colorconvert.rgb2yuv422")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GSepFilter,< GMat(GMat, int, Mat, Mat, Point, Scalar, int, Scalar)>, "org.opencv.imgproc.filters.sepfilter")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GSobel,< GMat(GMat, int, int, int, int, double, double, int, Scalar)>, "org.opencv.imgproc.filters.sobel")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GYUV2BGR,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.yuv2bgr")
 
 cv::gapi::imgproc::G_TYPED_KERNEL (GYUV2RGB,< GMat(GMat)>, "org.opencv.imgproc.colorconvert.yuv2rgb")
 
 cv::gapi::imgproc::G_TYPED_KERNEL_M (GSobelXY,< GMat2(GMat, int, int, int, double, double, int, Scalar)>, "org.opencv.imgproc.filters.sobelxy")
 
GMat cv::gapi::gaussianBlur (const GMat &src, const Size &ksize, double sigmaX, double sigmaY=0, int borderType=BORDER_DEFAULT, const Scalar &borderValue=Scalar(0))
 使用高斯滤波器对图像进行模糊。
 
GArray< Point2fcv::gapi::goodFeaturesToTrack (const GMat &image, int maxCorners, double qualityLevel, double minDistance, const Mat &mask=Mat(), int blockSize=3, bool useHarrisDetector=false, double k=0.04)
 确定图像上的强角点。
 
GMat cv::gapi::I4202BGR (const GMat &src)
 将图像从 I420 颜色空间转换为 BGR 颜色空间。
 
GMat cv::gapi::I4202RGB (const GMat &src)
 将图像从 I420 颜色空间转换为 BGR 颜色空间。
 
GMat cv::gapi::Laplacian (const GMat &src, int ddepth, int ksize=1, double scale=1, double delta=0, int borderType=BORDER_DEFAULT)
 计算图像的拉普拉斯算子。
 
GMat cv::gapi::LUV2BGR (const GMat &src)
 将图像从 LUV 颜色空间转换为 BGR 颜色空间。
 
GMat cv::gapi::medianBlur (const GMat &src, int ksize)
 使用中值滤波器对图像进行模糊。
 
GMat cv::gapi::morphologyEx (const GMat &src, const MorphTypes op, const Mat &kernеl, const Point &anchor=Point(-1,-1), const int iterations=1, const BorderTypes borderType=BORDER_CONSTANT, const Scalar &borderValue=morphologyDefaultBorderValue())
 执行高级形态学变换。
 
GMat cv::gapi::NV12toBGR (const GMat &src_y, const GMat &src_uv)
 将图像从 NV12 (YUV420p) 色彩空间转换为 BGR。函数将输入图像从 NV12 色彩空间转换为 RGB。Y、U 和 V 通道值的传统范围是 0 到 255。
 
GMatP cv::gapi::NV12toBGRp (const GMat &src_y, const GMat &src_uv)
 将图像从 NV12 (YUV420p) 色彩空间转换为 BGR。该函数将输入图像从 NV12 色彩空间转换为 BGR。Y、U 和 V 通道值的传统范围是 0 到 255。
 
GMat cv::gapi::NV12toGray (const GMat &src_y, const GMat &src_uv)
 将图像从 NV12 (YUV420p) 色彩空间转换为灰度。该函数将输入图像从 NV12 色彩空间转换为灰度。Y、U 和 V 通道值的传统范围是 0 到 255。
 
GMat cv::gapi::NV12toRGB (const GMat &src_y, const GMat &src_uv)
 将图像从 NV12 (YUV420p) 色彩空间转换为 RGB。该函数将输入图像从 NV12 色彩空间转换为 RGB。Y、U 和 V 通道值的传统范围是 0 到 255。
 
GMatP cv::gapi::NV12toRGBp (const GMat &src_y, const GMat &src_uv)
 将图像从 NV12 (YUV420p) 色彩空间转换为 RGB。该函数将输入图像从 NV12 色彩空间转换为 RGB。Y、U 和 V 通道值的传统范围是 0 到 255。
 
GMat cv::gapi::resize (const GMat &src, const Size &dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR)
 调整图像大小。
 
GMatP cv::gapi::resizeP (const GMatP &src, const Size &dsize, int interpolation=cv::INTER_LINEAR)
 调整平面图像的大小。
 
GMat cv::gapi::RGB2Gray (const GMat &src)
 将图像从 RGB 色彩空间转换为灰度。
 
GMat cv::gapi::RGB2Gray (const GMat &src, float rY, float gY, float bY)
 
GMat cv::gapi::RGB2HSV (const GMat &src)
 将图像从 RGB 色彩空间转换为 HSV。该函数将输入图像从 RGB 色彩空间转换为 HSV。R、G 和 B 通道值的传统范围是 0 到 255。
 
GMat cv::gapi::RGB2I420 (const GMat &src)
 将图像从RGB颜色空间转换为I420颜色空间。
 
GMat cv::gapi::RGB2Lab (const GMat &src)
 将图像从RGB颜色空间转换为Lab颜色空间。
 
GMat cv::gapi::RGB2YUV (const GMat &src)
 将图像从RGB颜色空间转换为YUV颜色空间。
 
GMat cv::gapi::RGB2YUV422 (const GMat &src)
 将图像从RGB颜色空间转换为YUV422。该函数将输入图像从RGB颜色空间转换为YUV422。R、G、B通道值的常规范围是0到255。
 
GMat cv::gapi::sepFilter (const GMat &src, int ddepth, const Mat &kernelX, const Mat &kernelY, const Point &anchor, const Scalar &delta, int borderType=BORDER_DEFAULT, const Scalar &borderValue=Scalar(0))
 对一个矩阵(图像)应用可分离线性滤波器。
 
GMat cv::gapi::Sobel (const GMat &src, int ddepth, int dx, int dy, int ksize=3, double scale=1, double delta=0, int borderType=BORDER_DEFAULT, const Scalar &borderValue=Scalar(0))
 使用扩展索贝尔算子计算第一、第二、第三或混合的图像导数。
 
std::tuple< GMat, GMatcv::gapi::SobelXY (const GMat &src, int ddepth, int order, int ksize=3, double scale=1, double delta=0, int borderType=BORDER_DEFAULT, const Scalar &borderValue=Scalar(0))
 使用扩展索贝尔算子计算第一、第二、第三或混合的图像导数。
 
GMat cv::gapi::YUV2BGR (const GMat &src)
 将图像从YUV颜色空间转换为BGR颜色空间。
 
GMat cv::gapi::YUV2RGB (const GMat &src)
 将图像从YUV颜色空间转换为RGB。该函数将输入图像从YUV颜色空间转换为RGB。Y、U、V通道值的常规范围是0到255。