实现 VGG (牛津视觉几何组) 描述符,使用“Descriptor Learning Using Convex Optimisation”(DLCO) 算法端到端训练,如 [245] 中所述。 更多...
#include <opencv2/xfeatures2d.hpp>
|
String | getDefaultName () const CV_OVERRIDE |
|
virtual float | getScaleFactor () const =0 |
|
virtual float | getSigma () const =0 |
|
virtual bool | getUseNormalizeDescriptor () const =0 |
|
virtual bool | getUseNormalizeImage () const =0 |
|
virtual bool | getUseScaleOrientation () const =0 |
|
virtual void | setScaleFactor (const float scale_factor)=0 |
|
virtual void | setSigma (const float isigma)=0 |
|
virtual void | setUseNormalizeDescriptor (const bool dsc_normalize)=0 |
|
virtual void | setUseNormalizeImage (const bool img_normalize)=0 |
|
virtual void | setUseScaleOrientation (const bool use_scale_orientation)=0 |
|
virtual | ~Feature2D () |
|
virtual void | compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors) |
| 计算在图像(第一个变体)或图像集(第二个变体)中检测到的关键点集的描述符。
|
|
virtual void | compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) |
|
virtual int | defaultNorm () const |
|
virtual int | descriptorSize () const |
|
virtual int | descriptorType () const |
|
virtual void | detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray()) |
| 在图像(第一个变体)或图像集(第二个变体)中检测关键点。
|
|
virtual void | detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray()) |
|
virtual void | detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false) |
|
virtual bool | empty () const CV_OVERRIDE |
| 如果检测器对象为空,则返回 true。
|
|
virtual void | read (const FileNode &) CV_OVERRIDE |
| 从文件存储中读取算法参数。
|
|
void | read (const String &fileName) |
|
void | write (const Ptr< FileStorage > &fs, const String &name) const |
|
void | write (const String &fileName) const |
|
virtual void | write (FileStorage &) const CV_OVERRIDE |
| 将算法参数存储在文件存储中。
|
|
void | write (FileStorage &fs, const String &name) const |
|
| Algorithm () |
|
virtual | ~Algorithm () |
|
virtual void | clear () |
| 清除算法状态。
|
|
virtual void | save (const String &filename) const |
|
void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
|
void | write (FileStorage &fs, const String &name) const |
|
实现 VGG (牛津视觉几何组) 描述符,使用“Descriptor Learning Using Convex Optimisation”(DLCO) 算法端到端训练,如 [245] 中所述。
- 参数
-
◆ 匿名枚举
枚举器 |
---|
VGG_120 | |
VGG_80 | |
VGG_64 | |
VGG_48 | |
◆ create()
static Ptr< VGG > cv::xfeatures2d::VGG::create |
( |
int |
desc = VGG::VGG_120 , |
|
|
float |
isigma = 1.4f , |
|
|
bool |
img_normalize = true , |
|
|
bool |
use_scale_orientation = true , |
|
|
float |
scale_factor = 6.25f , |
|
|
bool |
dsc_normalize = false |
|
) |
| |
|
static |
Python |
---|
| cv.xfeatures2d.VGG.create( | [, desc[, isigma[, img_normalize[, use_scale_orientation[, scale_factor[, dsc_normalize]]]]]] | ) -> | retval |
| cv.xfeatures2d.VGG_create( | [, desc[, isigma[, img_normalize[, use_scale_orientation[, scale_factor[, dsc_normalize]]]]]] | ) -> | retval |
◆ getDefaultName()
String cv::xfeatures2d::VGG::getDefaultName |
( |
| ) |
const |
|
virtual |
Python |
---|
| cv.xfeatures2d.VGG.getDefaultName( | | ) -> | retval |
返回算法字符串标识符。当对象保存到文件或字符串时,此字符串用作顶层 xml/yml 节点标签。
从 cv::Feature2D 重新实现。
◆ getScaleFactor()
virtual float cv::xfeatures2d::VGG::getScaleFactor |
( |
| ) |
const |
|
纯虚 |
Python |
---|
| cv.xfeatures2d.VGG.getScaleFactor( | | ) -> | retval |
◆ getSigma()
virtual float cv::xfeatures2d::VGG::getSigma |
( |
| ) |
const |
|
纯虚 |
Python |
---|
| cv.xfeatures2d.VGG.getSigma( | | ) -> | retval |
◆ getUseNormalizeDescriptor()
virtual bool cv::xfeatures2d::VGG::getUseNormalizeDescriptor |
( |
| ) |
const |
|
纯虚 |
Python |
---|
| cv.xfeatures2d.VGG.getUseNormalizeDescriptor( | | ) -> | retval |
◆ getUseNormalizeImage()
virtual bool cv::xfeatures2d::VGG::getUseNormalizeImage |
( |
| ) |
const |
|
纯虚 |
Python |
---|
| cv.xfeatures2d.VGG.getUseNormalizeImage( | | ) -> | retval |
◆ getUseScaleOrientation()
virtual bool cv::xfeatures2d::VGG::getUseScaleOrientation |
( |
| ) |
const |
|
纯虚 |
Python |
---|
| cv.xfeatures2d.VGG.getUseScaleOrientation( | | ) -> | retval |
◆ setScaleFactor()
virtual void cv::xfeatures2d::VGG::setScaleFactor |
( |
const float |
scale_factor | ) |
|
|
纯虚 |
Python |
---|
| cv.xfeatures2d.VGG.setScaleFactor( | scale_factor | ) -> | 无 |
◆ setSigma()
virtual void cv::xfeatures2d::VGG::setSigma |
( |
const float |
isigma | ) |
|
|
纯虚 |
Python |
---|
| cv.xfeatures2d.VGG.setSigma( | isigma | ) -> | 无 |
◆ setUseNormalizeDescriptor()
virtual void cv::xfeatures2d::VGG::setUseNormalizeDescriptor |
( |
const bool |
dsc_normalize | ) |
|
|
纯虚 |
Python |
---|
| cv.xfeatures2d.VGG.setUseNormalizeDescriptor( | dsc_normalize | ) -> | 无 |
◆ setUseNormalizeImage()
virtual void cv::xfeatures2d::VGG::setUseNormalizeImage |
( |
const bool |
img_normalize | ) |
|
|
纯虚 |
Python |
---|
| cv.xfeatures2d.VGG.setUseNormalizeImage( | img_normalize | ) -> | 无 |
◆ setUseScaleOrientation()
virtual void cv::xfeatures2d::VGG::setUseScaleOrientation |
( |
const bool |
use_scale_orientation | ) |
|
|
纯虚 |
Python |
---|
| cv.xfeatures2d.VGG.setUseScaleOrientation( | use_scale_orientation | ) -> | 无 |
此类的文档是从以下文件生成的