OpenCV 4.11.0
开源计算机视觉库
加载中…
搜索中…
未找到匹配项
形状距离和匹配

详细描述

类 cv::AffineTransformer
 OpenCV仿射变换算法的包装类。: 更多…
 
类 cv::ChiHistogramCostExtractor
 基于卡方检验的代价提取。: 更多…
 
类 cv::EMDHistogramCostExtractor
 基于EMD(地球移动距离)的代价提取。: 更多…
 
类 cv::EMDL1HistogramCostExtractor
 基于EMD-L1的代价提取。: 更多…
 
类 cv::HausdorffDistanceExtractor
 基于轮廓定义的形状之间简单的Hausdorff距离度量。 更多…
 
类 cv::HistogramCostExtractor
 直方图代价算法的抽象基类。 更多…
 
类 cv::NormHistogramCostExtractor
 基于范数的代价提取。: 更多…
 
类 cv::ShapeContextDistanceExtractor
 形状上下文描述符和匹配算法的实现。 更多…
 
类 cv::ShapeDistanceExtractor
 形状距离算法的抽象基类。 更多…
 
类 cv::ShapeTransformer
 形状变换算法的抽象基类。 更多…
 
类 cv::ThinPlateSplineShapeTransformer
 变换的定义。 更多…
 

函数

Ptr< AffineTransformercv::createAffineTransformer (bool fullAffine)
 
Ptr< HistogramCostExtractorcv::createChiHistogramCostExtractor (int nDummies=25, float defaultCost=0.2f)
 
Ptr< HistogramCostExtractorcv::createEMDHistogramCostExtractor (int flag=DIST_L2, int nDummies=25, float defaultCost=0.2f)
 
Ptr< HistogramCostExtractorcv::createEMDL1HistogramCostExtractor (int nDummies=25, float defaultCost=0.2f)
 
Ptr< HausdorffDistanceExtractorcv::createHausdorffDistanceExtractor (int distanceFlag=cv::NORM_L2, float rankProp=0.6f)
 
Ptr< HistogramCostExtractorcv::createNormHistogramCostExtractor (int flag=DIST_L2, int nDummies=25, float defaultCost=0.2f)
 
Ptr< ShapeContextDistanceExtractorcv::createShapeContextDistanceExtractor (int nAngularBins=12, int nRadialBins=4, float innerRadius=0.2f, float outerRadius=2, int iterations=3, const Ptr< HistogramCostExtractor > &comparer=createChiHistogramCostExtractor(), const Ptr< ShapeTransformer > &transformer=createThinPlateSplineShapeTransformer())
 
Ptr< ThinPlateSplineShapeTransformercv::createThinPlateSplineShapeTransformer (double regularizationParameter=0)
 
float cv::EMDL1 (InputArray signature1, InputArray signature2)
 基于论文“EMD-L1: An efficient and Robust Algorithm for comparing histogram-based descriptors”(Haibin Ling和Kazunori Okuda著)和“The Earth Mover's Distance is the Mallows Distance: Some Insights from Statistics”(Elizaveta Levina和Peter Bickel著)计算两个加权点配置之间的“最小工作量”距离。
 

函数文档

◆ createAffineTransformer()

Ptr< AffineTransformer > cv::createAffineTransformer ( bool fullAffine)
Python
cv.createAffineTransformer(fullAffine) -> retval

#include <opencv2/shape/shape_transformer.hpp>

完整构造函数

◆ createChiHistogramCostExtractor()

Ptr< HistogramCostExtractor > cv::createChiHistogramCostExtractor ( int nDummies = 25,
float defaultCost = 0.2f )
Python
cv.createChiHistogramCostExtractor([, nDummies[, defaultCost]]) -> retval

◆ createEMDHistogramCostExtractor()

Ptr< HistogramCostExtractor > cv::createEMDHistogramCostExtractor ( int flag = DIST_L2,
int nDummies = 25,
float defaultCost = 0.2f )
Python
cv.createEMDHistogramCostExtractor([, flag[, nDummies[, defaultCost]]]) -> retval

◆ createEMDL1HistogramCostExtractor()

Ptr< HistogramCostExtractor > cv::createEMDL1HistogramCostExtractor ( int nDummies = 25,
float defaultCost = 0.2f )
Python
cv.createEMDL1HistogramCostExtractor([, nDummies[, defaultCost]]) -> retval

◆ createHausdorffDistanceExtractor()

Ptr< HausdorffDistanceExtractor > cv::createHausdorffDistanceExtractor ( int distanceFlag = cv::NORM_L2,
float rankProp = 0.6f )
Python
cv.createHausdorffDistanceExtractor([, distanceFlag[, rankProp]]) -> retval

◆ createNormHistogramCostExtractor()

Ptr< HistogramCostExtractor > cv::createNormHistogramCostExtractor ( int flag = DIST_L2,
int nDummies = 25,
float defaultCost = 0.2f )
Python
cv.createNormHistogramCostExtractor([, flag[, nDummies[, defaultCost]]]) -> retval

◆ createShapeContextDistanceExtractor()

Ptr< ShapeContextDistanceExtractor > cv::createShapeContextDistanceExtractor ( int nAngularBins = 12,
int nRadialBins = 4,
float innerRadius = 0.2f,
float outerRadius = 2,
int iterations = 3,
const Ptr< HistogramCostExtractor > & comparer = createChiHistogramCostExtractor(),
const Ptr< ShapeTransformer > & transformer = createThinPlateSplineShapeTransformer() )
Python
cv.createShapeContextDistanceExtractor([, nAngularBins[, nRadialBins[, innerRadius[, outerRadius[, iterations[, comparer[, transformer]]]]]]]) -> retval

◆ createThinPlateSplineShapeTransformer()

Ptr< ThinPlateSplineShapeTransformer > cv::createThinPlateSplineShapeTransformer ( 双精度浮点数 regularizationParameter = 0)
Python
cv.createThinPlateSplineShapeTransformer([, regularizationParameter]) -> retval

#include <opencv2/shape/shape_transformer.hpp>

完整构造函数

◆ EMDL1()

float cv::EMDL1 ( 输入数组 signature1,
输入数组 signature2 )

#include <opencv2/shape/emdL1.hpp>

基于论文“EMD-L1: An efficient and Robust Algorithm for comparing histogram-based descriptors”(Haibin Ling和Kazunori Okuda著)和“The Earth Mover's Distance is the Mallows Distance: Some Insights from Statistics”(Elizaveta Levina和Peter Bickel著)计算两个加权点配置之间的“最小工作量”距离。

参数
signature1第一个特征向量,一个单列浮点矩阵。每一行表示每个bin中直方图的值。
signature2第二个特征向量,格式和大小与signature1相同。